Cloud microphysics Claudia Emde

Meteorological Institute, LMU, Munich, Germany

WS 2011/2012

・ロト ・回ト ・モト ・モト

Overview of cloud physics lecture

Atmospheric thermodynamics

- gas laws, hydrostatic equation
- 1st law of thermodynamics
- moisture parameters
- adiabatic / pseudoadiabatic processes
- stability criteria / cloud formation
- Microphysics of warm clouds
 - nucleation of water vapor by condensation
 - growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence)
 - formation of rain
- Microphysics of cold clouds
 - homogeneous nucleation
 - heterogeneous nucleation
 - contact nucleation
 - crystal growth (from water phase, riming, aggregation)
 - formation of precipitation
- Observation of cloud microphysical properties
- Parameterization of clouds in climate and NWP models.

Summary Lecture 1

Summary L1 - The ideal gas equation

- Equation of state: relation between p, V, T of a material
- Equation of state for gases \Rightarrow ideal gas equation

$$pV = mRT$$
 $p = \rho RT$ $p\alpha = RT$

- R gas constant for 1 kg of gas
- α = 1/ρ specific volume of gas (V occupied by 1 kg of gas at specific p and T)
- Boyle's law (T=const.) and Charles' laws (p=const., V=const.)

Sir Robort Boyle (1627–1691)

Images from Wikipedia

Cloud microphysics

October 20, 2011 3 / 36

Summary L1 - Definitions

- gram-molecular weight (mole), e.g. 1 mol H₂O = 18.015 g
- number of moles n = m/M
- number of molecules in 1 mole N_A=6.022·10²³ (Avogadro's number)
- Avogadro's hypothesis: gases containing the same number of molecules occupy the same volume
- universal gas constant R^{*}=8.3145JK⁻¹mol⁻¹ \Rightarrow $pV = nR^*T$
- Boltzmann's constant k=R*/N_A

Amedeo Avogadro (1776-1856)

Images from Wikipedia

Ludwig Boltzmann (1844–1906)

Mixture of gases

- Dalton's law: total pressure exerted by a mixture of gases is equal to sum of partial pressures (p = p_d + e)
- dry air (mixture of atmospheric gases excluding water vapor):
 - $p_d \alpha_d = R_d T$
 - *p_d* "partial pressure" of dry air
 - apparent molecular weight

$$M_d = rac{\sum_i m_i}{\sum_i m_i/M_i} = 28.97 rac{\mathrm{g}}{\mathrm{mol}} \Rightarrow R_d = 1000 rac{R^*}{M_d} = 287.0 rac{\mathrm{J}}{\mathrm{Kkg}}$$

water vapor

- $e\alpha_v = R_v T$
- e partial pressure of water vapor

•
$$M_{w} = 18.0167 \frac{\text{g}}{\text{mol}} \Rightarrow R_{v} = 1000 \frac{R^{*}}{M_{w}} = 461.51 \frac{\text{J}}{\text{Kkg}}$$

•
$$\frac{R_d}{R_v} = \frac{M_w}{M_d} \equiv \epsilon = 0.622$$

• virtual temperature: $p = \rho R_d T_v$ with $T_v \equiv \frac{T}{1 - \frac{\rho}{\rho}(1 - \epsilon)}$

Adiabatic processes

Water vapor in air

Static stability

The hydrostatic equation

$$\frac{\partial p}{\partial z} = -g\rho$$
 $gdz = -\alpha dp$

Sir Issac Newton (1642–1727) Image from Wikipedia

Adiabatic processes

Water vapor in ai

Static stability

First law of thermodynamics

Fig. 3.4 Representation of the state of a working substance in a cylinder on a p-V diagram. The work done by the working substance in passing from P to Q is $p \, dV$, which is equal to the blue-shaded area. [Reprinted from *Atmospheric Science: An Introductory Survey*, 1st Edition, J. M. Wallace and P. V. Hobbs, p. 62, Copyright 1977, with permission from Elsevier.] Figure from Wallace and Hobbs

energy conservation

$$dq = du + dw$$

$$dq = du + pd\alpha$$

$$dq = c_p dT - \alpha dp$$

...

Adiabatic processes

Water vapor in a

Static stability

Specific heats

• specific heat at const. V:
$$c_V = \left(\frac{dq}{dT}\right)_{V=const} = \left(\frac{du}{dT}\right)_{V=const}$$

• specific heat at const. p: $c_p = \left(\frac{dq}{dT}\right)_{p=const}$

$$c_p = c_V + R$$

 $c_V = f rac{R}{2}$

f-degrees of freedom

• for dry air $\Rightarrow f = 7$ (O₂ and N₂: 2-atomic linear molecules) $c_V = 717 \frac{J}{K}, c_p = 1004 \frac{J}{K}$

Summary Lecture 1	Enthalpy	Adiabatic processes	Water vapor in air	Static stabilit

http://www.tutorvista.com

<ロ> <同> <同> < 同> < 同>

Assume that heat is added to system so that α increases, V = const.

$$\Delta Q = (u_2 - u_1) + p(\alpha_2 - \alpha_1) = (u_2 + p\alpha_2) - (u_1 + p\alpha_1)$$

= $h_2 - h_1$

Enthalpy of unit mass of a material:

$$h \equiv u + p\alpha$$

$$dh = c_p dT \Rightarrow h = c_p T$$
 (with $h = 0$ at $T = 0$)

h corresponds to the heat required to raise the temperature of a material from 0 to T at p=const.

Application to atmospheric layer

Assumptions:

- layer is at rest and in hydrostatic balance
- layer is heated by radiative transfer (p of overlying air const.)

 \Rightarrow air within layer expands and does work on overlying air by lifting it against gravitational force ($dq = c_p dT - \alpha dp$).

This can be written in terms of enthalpy h and geopotential ϕ :

$$dq = d(h + \phi) = d(c_{\rho}T + \phi)$$

Definition of geopotential: $d\phi \equiv gdz = -\alpha dp$ (work that must be done against Earth's gravitational field to raise mass of 1 kg from sea level to that point)

$$\phi(z) = \int_0^z g dz$$

Adiabatic processes

adiabatic = change in physical state without heat exchange $\Rightarrow dq = 0$

$$dq = du + pd\alpha$$

T rises in adiabatic compression T=const. in isothermal process

 $T_C > T_B \Rightarrow p_C > p_B$

Concept of air parcel

Assumptions:

- molecular mixing can be neglected (in Earth's atmosphere only important above ≈105 km and for 1 cm layer above surface), i.e. mixing can be regarded as exchange of macroscale "air parcels"
- parcel is thermally insulated from it's environment, i.e.
 T changes adiabatically as parcel rises or sinks,
 p always adapts to environmental air, which is assumed to be in hydrostatic equilibrium
- parcel moves slow enough, i.e. the macroscopic kinetic energy is a negligible fraction of the total energy

Dry adiabatic lapse rate

for adiabatic processes:

$$d(c_{
ho}T+\phi)=0\Rightarrow -rac{dT}{dz}_{
m dry\ parcel}=rac{g}{c_{
ho}}\equiv \Gamma_{d}$$

 Γ_d – dry adiabatic lapse rate (change of T with z)

Example for Earth's atmosphere:

• g=9.81
$$\frac{m}{s^2}$$
, c_p=1004 $\frac{J}{K}$ \Rightarrow Γ_d =9.8 $\frac{K}{km}$

• Actual lapse rate (for moist air) is smaller than Γ_d .

Potential temperature

The potential temperature θ is the temperature that the air parcel would have if it were expanded or compressed adiabatically to standard pressure p₀ (generally $p_0=1000$ hPa)

Poisson's equation

$$\theta = T\left(\frac{p_0}{\rho}\right)^{R/c_1}$$

 θ is conserved during adiabatic transformations \Rightarrow very useful parameter in atmospheric thermodynamics (most processes adiabatic)

Moisture parameters

- mixing ratio: $w = \frac{m_v}{m_d}$ typically a few g/kg in mid-latitudes to 20 g/kg in tropics
- specific humidity: $q = \frac{m_v}{m_v + m_d} = \frac{w}{w+1}$ $w \approx 0.01 \rightarrow q \approx w$
- virtual temperature for given mixing ratio: $T_v \approx T(1 + 0.61w)$ for T=30°C and w=20g/kg \Rightarrow T_v-T=3.7°C

Adiabatic processes

Water vapor in air

Static stability

Saturation vapor pressures

(a) Unsaturated

Fig. 3.8 A box (a) unsaturated and (b) saturated with respect to a plane surface of pure water at temperature *T*. Dots represent water molecules. Lengths of the arrows represent the relative rates of evaporation and condensation. The saturated (i.e., equilibrium) vapor pressure over a plane surface of pure water at temperature *T* is e_s as indicated in (b). Figure from Wallace and Hobbs

equivalent definitions for water and ice

Summary Lecture 1

Enthalpy

Adiabatic processes

Water vapor in air

Static stability

Saturation vapor pressure

Fig. 3.9 Variations with temperature of the saturation (i.e., equilibrium) vapor pressure e_s over a plane surface of pure water (red line, scale at left) and the difference between e_s and the saturation vapor pressure over a plane surface of ice e_{gi} (blue line, scale at right).

Figure from Wallace and Hobbs

 evaporation rate from ice less than from water : e_s(T) > e_{si}(T)

 \Rightarrow ice particle in water-saturated air grows due to deposition of water vapor on it (important for formation of precipitation)

Moisture parameters ctd.

• Saturation mixing ratio w_s:

 $w_s = \frac{m_{vs}}{m_d} = \cdots = \epsilon \frac{e_s}{\rho - e_s} \approx 0.622 \frac{e_s}{\rho}$ (since for atmospheric T: $p \gg e_s$)

- Relative humidity RH: $RH = 100 \frac{w}{w_s} = 100 \frac{e}{e_s}$ [%]
- Dew point T_D :

temperature to which air must be cooled at p=const., so that air becomes saturated w.r.t. water (equivalent def. for frost point)

measurement of T_D yields $RH = \frac{e_s(T_D,p)}{e_s(T,p)}$

Adiabatic processes

Lifting condensation level (LCL)

Fig. 3.10 The lifting condensation level of a parcel of air at A, with pressure p, temperature T, and dew point T_{d_i} is at C on the skew $T - \ln p$ chart. Foure from Wallace and Hobbs

- LCL: level to which moist air parcel can be lifted adiabatically before it becomes saturated w.r.t. water
- during lift: *w*=const., θ=const., *w_s* decreases until *w_s* = *w* at LCL

Adiabatic processes

Water vapor in air

Static stability

Lifting condensation level (LCL)

from /rst.gsfc.nasa.gov

Lifting condensation level (LCL)

from Wikipedia

Latent heats

- If heat is added to system ⇒ change in T or change in phase
- phase transition: Δu completely used for changes in molecular configuration in presence of intermolecular forces
- Latent heat of melting *L_m*: heat that is required to convert unit mass of a material from solid to liquid phase without change in T, equal to latent heat of freezing
- melting point: T at which phase transition occurs
- for water at 1013hPa, $0^{\circ}C \Rightarrow L_m = 3.34 \cdot 10^5 \frac{J}{kq}$
- latent heat of vaporization or evaporation L_v defined equivalently
- for water 1013hPa, 100°C (boiling point) $\Rightarrow L_v = 2.25 \cdot 10^6 \frac{J}{kg}$

Saturated adiabatic and pseudoadiabatic processes

- air parcel rises \Rightarrow T decreases with z until saturation is reached
- further lifting ⇒ condensation of liquid water (or deposition on ice) ⇒ release of latent heat ⇒ rate of decrease in T reduced

Saturated adiabatic process

All condensation products remain in parcel, process still adiabatic and reversible

Pseudoadiabatic process

Condensation products fall out, process is irreversible. Not adiabatic since products carry out **small** amount of heat.

Saturated adiabatic lapse rate

$$\Gamma_{s} = -rac{dT}{dz} pprox rac{\Gamma_{d}}{1 + rac{L_{v}}{C_{p}} \left(rac{dw}{dT}
ight)_{p}}$$

- Γ_s varies with p, T; in contrast to Γ
- since condensation releases heat: $\Gamma_s < \Gamma$
- typical values:

4 K/km near ground in warm humid airmasses 6-7 K/km in middle troposphere

near tropopause, Γ_s only slightly smaller than Γ (e_s very small, no condensation)

Equivalent potential temperature θ_e

 θ_e is the potential temperature θ of the air parcel when all water vapor has condensed out so that it's saturation mixing ratio is zero.

$$heta_e pprox heta \exp\left(rac{L_v w_s}{c_p T}
ight)$$

(During "Föhn", T and θ increase, RH decreases, θ_e remains constant)

Adiabatic processes

Static stability for unsaturated air

Fig. 3.12 Conditions for (a) positive static stability ($\Gamma < \Gamma_d$) and (b) negative static instability ($\Gamma > \Gamma_d$) for the displacement of unsaturated air parcels. Figure from Wallace and Hobbs

- atmospheric layer with actual lapse rate Γ less than dry adiabatic lapse rate Γ_D ⇒ stable stratification, positive static stability
- Γ > Γ_D ⇒ unstable stratification, positive static stability (not persistant in free atmosphere due to strong vertical mixing)
- $\Gamma > \Gamma_D \Rightarrow neutral$

Gravity waves

For stably stratified layers, so called gravity waves may form.

buoyancy oscillation of air parcel

 $z'(t) = z'(0) \cos Nt$

Brunt-Väisälä frequency

$$N = \left(\frac{g}{T}\left(\Gamma_d - \Gamma\right)\right)^{1/2}$$

Gravity waves

from Wikipedia

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 三 つ Q () October 20, 2011 29/36

Adiabatic processes

Water vapor in air

Static stability

Gravity waves

from Wikipedia

October 20, 2011 30 / 36

Cloud microphysics

Gravity waves

from www.weathervortex.com

October 20, 2011 31 / 36

Inversions

from Wikipedia

Inversions

Photo by B. Mayer, taken at Heimgarten

Static stability for saturated air

- $\bullet\,$ if air parcel is saturated $\Rightarrow\,T$ decreases with height at $\Gamma_{\mathcal{S}}$
- with same arguments as for unsaturated air parcel
 - $\Gamma < \Gamma_S$ stable
 - $\Gamma = \Gamma_S$ neutral
 - $\Gamma > \Gamma_S$ unstable

Adiabatic processes

Water vapor in air

Static stability

Conditional and convective stability

Fig. 3.16 Conditions for conditional instability ($\Gamma_s < \Gamma < \Gamma_d$). Γ_s and Γ_d are the saturated and dry adiabatic lapse rates, and Γ is the lapse rate of temperature of the ambient air. LCL and LFC denote the *lifting condensation level* and the *level of free convection*, respectively.

Figure from Wallace and Hobbs

- atmospheric layer with actual lapse rate between Γ_S and Γ_D \Rightarrow conditional instability
- Level of free convection (LFC)
 ⇒ from this level parcel is unstable, is carried upward in absence of forced lifting
- vigorous convective overturning can occur if vertical motions are large enough to lift air parcel beyond LFC

Adiabatic processes

Water vapor in air

Static stability

Convective overshooting

from Wikipedia

Cloud microphysics