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Abstract

Cloud fraction and cloud size distributions derived from measurements are crucial param-
eters in atmospheric research. Cloud fraction determines the influence of clouds on the
energy budget, from a cloud size distribution mass and energy fluxes can be calculated.
Furthermore, better knowledge about both, cloud fraction and cloud size distribution,
helps to improve future climate projections, as clouds were identified as a major source
of uncertainty. To derive these quantities from measurement data, it is necessary distin-
guish clear sky from clouds. For air and spaceborne imaging instruments this is commonly
done using the contrast of bright clouds in front of a dark background. This approach
fails over the ocean, when the bright reflection of sunlight on the water surface, referred
to as sunglint, removes the contrast between clouds and background. To overcome this
problem, a cloud detection algorithm based on water vapor absorption in the short wave
infrared (SWIR) solar spectrum was developed. From the view of an air or spacecraft,
SWIR radiation reflected on the ocean’s surface experiences higher absorption than ra-
diation reflected on top of a cloud, due to its longer path through the atmosphere and
higher water vapor concentrations near the surface. This difference in absorption is most
pronounced in the water vapor absorption band at 1125 nm and in the weak absorbing
flanks of the strong absorption bands at 1375 and 1900 nm. The developed algorithm uses
a least square fit of a reference transmission spectrum, calculated with radiative transfer
model DISORT (conatined in libRadtran), to extract the absorption information from the
measured spectrum. To assess the performance of the algorithm, it was validated against
3D radiative transfer simulations using the Monte Carlo model MYSTIC with a cloud
field taken from a Large Eddy Simulation (LES) model. Furthermore, it was applied to
measurement data collected by the imaging spectrometer specMACS during the NARVAL
II field campaign. The algorithm showed good performance on model data. Depending
on the wind speed, which determines the brightness of the sunglint, and the solar zenith
angle, which influences absorption and cloud shading, the cloud fraction derived by the al-
gorithm was 1.1 to 2.75 percentage points below the benchmark cloud fraction of 24.55%.
For measurement data the algorithm also revealed good results. Additionally, the derived
cloud size distribution agrees well with results from previous studies. In this thesis it
could be shown for the first time, that water vapor absorption is a powerful tool to detect
low clouds in sunglint contaminated data of air and spaceborne imaging spectrometers.
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1 Introduction

Clouds play a crucial role in Earth’s climate system (Siebesma et al., 2003). In particular,
shallow cumulus clouds – especially those occurring in the trade wind region – are in the
focus of recent research projects. The reasons therefore are strikingly simple. On the
one hand, shallow cumulus clouds have negative net radiative effect on Earth’s energy
budget, which means that they cool Earth’s climate. This effect originates from reflection
of solar radiation back to space due to the high albedo of clouds. On the other hand,
shallow cumulus clouds in the trade wind region play a key role in moisture transport
towards the tropics and therefore influence deep convection in the ITCZ (Siebesma, 1998).
As tropical deep convection is the major driver for the Hadley circulation, the impact of
shallow cumulus convection reaches up to global scales.

To gain a better understanding of the most important processes controlling develop-
ment and evolution of shallow cumulus convection in the trade wind region, the NARVAL
II measurement campaign was carried out in August 2016 in the western tropical Atlantic
ocean near Barbados. Remote sensing instruments such as RADAR, LIDAR and the
hyperspectral imager specMACS (Ewald et al., 2016) were mounted on the DLR research
aircraft HALO.

To obtain cloud statistics such as cloud fraction and a cloud size distribution, it is
necessary to derive a cloud mask from the measurement data. For passive remote sens-
ing instruments like specMACS, which measure reflected solar radiation, cloud masks are
often obtained using the contrast of bright clouds in front of a dark background. At low
latitudes however, the bright reflection of sunlight on the ocean’s surface frequently dis-
turbs measurements because of the high solar elevation. This reflection of solar radiation
on rough water surfaces is known as sunglint. The extent and brightness of the sunglint
depend on the slope of present waves and therefore on wind speed (Cox and Munk, 1954).
The presence of sunglint, using the brightness contrast for cloud detection fails, because
the reflectance of the ocean’s surface reaches or even exceeds the one of clouds.

In this thesis an algorithm is developed to derive a cloud mask even in the presence
of sunglint. The method uses the absorption by water vapor at wavelengths between 1
and 2 µm captured by the short wave infrared (SWIR) camera of the specMACS instru-
ment. Water vapor absorption has previously been used to identify cirrus clouds in air
and spaceborne measurements, because their signature in water vapor absorption bands
is pronounced (Gao and Kaufman, 1995). In this work it has been shown, that the high
sensitivity and the high spectral resolution of specMACS makes it possible to distinguish
shallow clouds from the sunglint by their water vapor signature. The cloud mask ob-
tained with the water vapor method is used to derive the cloud fraction and cloud size
distribution for the data captured during NARVAL II.
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1 Introduction

This thesis is organized as follows: The second chapter explains the theoretical back-
ground of atmospheric radiative transfer and water vapor absorption. Additionally, com-
mon methods for cloud detection are reviewed. Chapter three characterizes the specMACS
instrument as well as the developed cloud detection algorithm based on water vapor ab-
sorption. The fourth chapter shows the performance of the algorithm on model and
measurement data. Chapter five summarizes the achievements of this thesis and provides
an outlook of possible improvements and further applications of the developed algorithm.
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2 Background

2.1 Radiative transfer

The propagation of electromagnetic radiation through a medium – referred to as radiative
transfer – is a fundamental process in Earth’s atmosphere. As the atmosphere itself
consists of different gases, aerosols as well as water and ice clouds, the equation of radiative
transfer has to be solved by complex numerical models. In the following section a short
introduction is given to fundamental quantities and processes in radiative transfer, the
radiative transfer equation and its simplest solution.

Information in this chapter is predominantly taken from Liou (2002) and Zdunkowski
et al. (2007). Other sources are cited when appropriate.

2.1.1 Important quantities

For the physical description of radiation and its interaction with matter there are some
important terms and quantities which will be defined subsequently:

• Radiance L : Describes the amount of incoming or outgoing radiant energy (dQ)
within a time interval (dt), from or into a certain direction – given by the solid angle
(dΩ) – per unit area (dA):

L =
dQ

dΩ dt cos θ dA
(2.1)

The cosine of the zenith angle θ accounts for cases in which dA is not perpendicular
to the propagation direction of the radiation. Radiance is given in Wm−2sr−1.

• Irradiance E: Integrating the radiance over the half-space (2π) – either the upper
or the lower hemisphere – weighted by the cosine of the zenith angle yields the
energy flux of radiation per unit area. Equation 2.1 therefore reduces to

E =
dQ

dt dA
(2.2)

with the units of irradiance being Wm−2.

• Absorption cross section σabs: A measure for the ability of a molecule or particle
to absorb radiation. The absorption cross section can be larger than the geometrical
cross section as the absorption can occur even if the photon does not directly hit
the target. The SI unit is m2, but cm2 is also commonly used.
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2 Background

• Scattering cross section σsca: The Scattering cross section describes the ability
of a particle or molecule to scatter radiation. It is analogous to the absorption cross
section and has the same units.

• Absorption coefficient βabs: This quantity is derived by multiplying the absorp-
tion cross section with the number density of absorbers nabs. For instance the num-
ber of molecules in the volume considered: βabs = σabs · nabs, resulting in units of
m−1. It describes how much radiation is absorbed when a beam of light propagates
through a infinitesimally thin layer containing absorbing substances.

• Scattering coefficient βsca: The scattering coefficient is derived analog to the
absorption coefficient by multiplying the scattering cross section with the number
density of the scattering agent: βsca = σsca · nsca which also yields the unit m−1.

• Extinction coefficient βext: Adding up the scattering and absorption coefficient
gives the Extinction coefficient: βext = βabs+βsca. Therefore it contains information
about the over all attenuation of a light beam by absorbing and scattering molecules
and particles.

• Single scattering albedo ω0: The proportion of scattering on the total extinction:
ω0 = βsca

βext
.

• Optical thickness τ : This quantity is generally defined as the integral of the
extinction coefficient along the path of the light beam:

τ =

b∫
a

βext(s) ds (2.3)

where a and b denote the start and endpoint. As βext is the sum of βabs and βsca
one can also split up the optical thickness into absorbing and scattering parts:
τ = τabs + τsca.

• Asymmetry parameter g: This parameter describes the amount of radiation
scattered in forward direction with respect to the total incoming radiation and
therefore takes values between 0 and 1.

2.1.2 Radiative transfer equation

The equation describing the propagation of electromagnetic radiation in its full complexity
was first formulated by Chandrasekhar (1950). The equation is often formulated using
the single scattering albedo but in the following it is written in a more illustrative way:

dL (Ω)

ds︸ ︷︷ ︸
(1)

= − βext L (Ω)︸ ︷︷ ︸
(2)

+
βsca
4π

∫
4π

p (Ω′,Ω)L (Ω′) dΩ′︸ ︷︷ ︸
(3)

+ βabsB (T )︸ ︷︷ ︸
(4)

(2.4)
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2.1 Radiative transfer

Starting on the left hand side, this equation describes the change of radiance in a light
beam along the traveled path (1) is equal to the portion of the radiation leaving the
beam through extinction (2), plus the radiance added by photons being scattered (3) or
thermally emitted (4) into the direction of the beam.

The scattering phase function p (Ω′,Ω) denotes the probability of an approaching
photon from an certain direction Ω′ being scattered into the direction of the beam Ω.
The incoming radiance from this direction is denoted as L (Ω′). To take all photons from
all directions into account it has to be integrated over the whole sphere (4π).

Term (4) consists of the absorption coefficient βabs that according to Kirchoff’s law, is
equal to the emission coefficient. It is multiplied by the Planck function, which describes
the spectral emission by a black body Planck (1901)

Bλ(T ) =
2hc2

λ5
1

e
hc
λkT − 1

(2.5)

The emitted radiance depends on the temperature T and the wavelength λ. An important
property of black body radiation is isotropy, which means that the same amount of radi-
ation is emitted in every direction. Black body radiation gives the upper limit of emitted
radiance by a material of certain temperature. Materials emitting less radiation than a
black body are referred to as gray bodies. Integrating Planck’s law over all wavelengths
and a half-space yields the Stefan-Boltzmann law:

E = σ T 4. (2.6)

with the Stefan-Boltzmann constant σ = 5.67 · 10−8 Wm−2K−4 This equation says, that
the power emitted per unit area by a black body only depends on its temperature T in
K. For a gray body equation (2.6) is multiplied by a factor ε which is smaller than one,
depending on its emissivity.

As scattering, absorption and the black body emission highly depend on wavelength,
the radiative transfer equation as a whole has a spectral dependency. Despite the complex-
ity of the radiative transfer equation, under certain conditions, there are simple analytical
solutions.

2.1.3 The Bouguer-Lambert-Beer law

The simplest solution results if one only considers the attenuation of a light beam by
extinction during its propagation through a medium, such as an atmospheric layer with
a certain vertical extension for instance. Thermal emission(4) and the scattering integral
(3) in equation (2.4) are ignored which reduces the equation of radiative transfer to

dL

ds
= −βext L. (2.7)

Solving this equation for a defined path between two points and using the definition of
optical thickness from equation (2.3) yields

L = L0 e
− τ (2.8)
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2 Background

L0 denotes the initial radiance and L the radiance left after propagation through a medium
of optical thickness τ . For example, an optical thickness of τ = 1 would mean that 37%
of the initial radiance would pass the medium without being scattered or absorbed. Due
to the spectral dependency of βext, τ is in generally different for every wavelength. In this
context it is useful to define the term transmittance which will be used later

T =
L

L0

= e− τ (2.9)

Transmittance describes the fraction of light which is not absorbed or scattered and can
therefore take values between 0 and 1.

2.1.4 The solar spectrum
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Figure 2.1: Measured solar spectrum with a resolution of 1 nm (Kurucz, 1992) at top
of atmosphere (orange) compared to the spectrum of a black body with a
temperature of 5800 K (blue) using Planck’s law (eq. 2.5).

Solar radiation is by far the most important energy source for the Earths climate system.
The current best estimate of top of the atmosphere (TOA) energy flux is 1360.8 ± 0.5
Wm−2, with fluctuations of 1.6 Wm−2 between the recent minima and maxima of the
11-year solar cycle (Kopp and Lean, 2011). The radiation mainly originates from the
Sun’s photosphere which has an average temperature of 5800 K. Therefore, the spectrum
of solar radiation can be described by Planck’s law of black body radiation (see equation
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2.1 Radiative transfer

Figure 2.2: Comparison of the measuresd solar spectrum at TOA (dotted) and at the
Earths surface (solid). Regions of high attenuation are marked by the respon-
sible absorbing molecules. Figure from Zdunkowski et al. (2007)

2.5) at a temperature of 5800 K. Figure 2.1 shows the comparison of the spectral irradi-
ance between a measured solar spectrum and the theoretical spectrum of a black body at
TOA. In the ultra violet part of the spectrum below 185 nm the measured curve shows
strong variability which is due to electronic emission lines of atoms located in regions of
high temperature in the solar atmosphere. One of the most famous emission lines is the
Lyman-alpha line of the hydrogen atom at 121.6 nm.

A second feature predominantly occurring in the visible and infrared region of the
solar spectrum are absorption lines. They are named Fraunhofer lines after their explorer
Joseph Fraunhofer and are caused by electronic absorption by atoms in a cooler layer
above the photosphere also called chromosphere. One of the strongest absorption lines is
found at 656.3 nm and caused by the H-alpha line of hydrogen.

After the solar radiation has reached TOA it penetrates the different layers of the
Earth’s atmosphere. A larger fraction of radiation is thereby absorbed by radiatively
active gases like H2O, O3 and CO2 or scattered by air molecules and aerosol particles.
The the solar spectrum measured at sea level therefore significantly deviates from the
one measured at TOA as shown in figure 2.2. The most important absorbing gas in the
ultraviolet part of the spectrum is O3 which is most abundant in the stratosphere. Be-
side H2O, O3 and O2 are the most important absorbers of visible light. In the infrared
spectrum H2O and CO2 contribute most to the attenuation of solar radiation.

These strong absorption features of water vapor in the infrared solar spectrum are impor-
tant for Earth’s energy budget and play a crucial role in the cloud detection algorithm
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2 Background

presented in this thesis. Therefore, the physical process of water vapor absorption is
discussed in the next section.

2.1.5 Absorption lines of water vapor in the short wave infrared

Absorption of electromagnetic radiation by atmospheric gases is one of the most impor-
tant process in the Earth’s climate system. If there was no absorption there would be
no greenhouse effect and the temperature on our planet would be as low as 255 Kelvin,
which is about 33 Kelvin below present global mean temperature (Wallace and Hobbs,
2006).

One of the most important radiatively active gases is water vapor, which not only
absorbs thermal infrared radiation emitted by the earths surface and atmosphere but also
visible and shortwave infrared radiation (SWIR). In the following part a physical expla-
nation for absorption of radiation by molecules and in particular for the absorption by
water vapor is given.

When a molecule absorbs a photon, the energy is stored as internal energy. The molecule
is then said to be in an excited state. There are three forms of internal energy in molecules:
rotational, vibrational and electronic energy. One important property of all these energy
forms is that they are quantized meaning that have discrete values. The energy differences
between two rotational energy states appear to generally be the smallest of all three forms
of internal energy. A typically energy difference between rotational energy states are a
few hundredths of an electron volt (1eV = 1.602 · 10−19 J) corresponding to a photon
with wavelength (λ) on the order of millimeters. The energies of vibrational transitions
have typically a few tenths of an electron volt which is equal to a photon of λ ∼ 10 µm
and electronic transitions occur at energies of a few electron volt (λ < 1 µm).

These numbers show that for the solar infrared spectrum vibrational transitions are
the ones of interest. Molecules are only able to absorb electromagnetic radiation if they
have a permanent or induced electric dipole moment. This is necessary so that the radia-
tion can excite the vibrational modes of the molecule. H2O for instance has an asymmetri-
cal charge distribution and therefore a permanent electric dipole moment. CO2, however,
can only have an induced electric dipole moment resulting from antisymmetric vibration.
The general theoretical approach to determine the vibrational modes of a molecule is to
treat it as a quantum mechanical harmonic oscillator with weightless springs connecting
the individual atoms. As the energies required for vibrational transitions are considerably
higher than for rotational transitions, vibrational transitions generally occur together with
rotational transitions. Therefore the rotation is also considered as a rigid rotator in the
harmonic oscillator model.

The solution of the Schrödinger equation for the hamonic oscillator rigid rotator
model can be separated into rotational and vibrational energy states. The discrete rota-
tion energy levels are described by

EJ = Bhc J (J + 1) (2.10)
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2.1 Radiative transfer

Figure 2.3: Vibrational transitions coupled with rotational transitions for the harmonic
oscillator of a molecule. Transitions with ∆J = +1 form the R-branch, ∆J =
−1 generates the P -branch. The Q-branch in the center belongs to ∆J =
0 transitions which are nearly at the same wavenumber. Figure from Liou
(2002).

where B = h/8π2Ic is the rotational constant, h = 6.62610−34 Js Planck’s constant, c
the speed of light and I the moment of inertia. J denotes the rotational quantum number,
which is always an integer. For the harmonic oscillator rigid rotator model the selection
rules determine the allowed transitions between values of J which are ∆J = ±1. In some
cases though, also the transition ∆J = 0 is allowed, which will briefly be discussed later.
The quantized energy levels for the vibrational modes are given by

Eυ = hνk

(
υk +

1

2

)
(2.11)

with the frequency of vibration νk and the vibrational quantum number υk. The subscript
k denotes the normal modes also called fundamentals. Triatomic molecules like H2O
have three fundamentals. The selection rules for the vibrational quantum number are
∆υk = ±1 except for the vibrational ground state υk = 0 only ∆υk = +1 is possible. As
vibrational transitions coincide with rotational transitions, the total energy is given by
the sum of rotational and vibrational energy:

Eυ,J = Bhc J (J + 1) + hνk

(
υk +

1

2

)
. (2.12)

An example of possible rotational-vibrational transitions is given in figure 2.3. Here
υ′′k = 0 denotes the vibrational ground state and υ′k = 1 the first excited state. Corre-
spondingly J ′ are the rotational states of the excited vibrational state and J ′′ the ones of
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2 Background

the ground state. The horizontal axis indicates the wavenumber of the vibration, where
higher wavenumbers correspond to higher energies and smaller wavelengths. The left side
shows the transitions for ∆J = −1. These transitions belong to the so called P -branch
whereas the transitions with ∆J = +1 on the right side of the plot form the R-branch.
The Q-branch with ∆J = 0 is only allowed for the ν2 vibrational mode (bend mode) of
linear triatomic molecules and for the three modes of bent triatomic molecules like H2O.
This branch originates from an oscillating dipole moment perpendicular to the internu-
clear axis. For a linear triatomic molecule, for instance CO2, the internuclear axis is the
line connecting all three atoms. If the molecules bend mode is excited the dipole moment
oscillates perpendicular to this internuclear axis, whereas for the antisymmetric stretch
mode (ν3) the dipole moment would oscillate parallel to this axis. For vibrational modes
of bent triatomic molecules there is always a component of the dipole moment oscillating
perpendicular to this axis.

Calculating the energies of the three fundamental vibrational modes of water vapor,
one finds them at the following wavenumbers:

• the symmetric stretch mode ν1 at 3651 cm−1 (λ ≈ 2.74 µm),

• the bend mode ν2 at 1595 cm−1 (λ ≈ 6.27 µm),

• and the antisymmetric stretch mode ν3 at 3756 cm−1 (λ ≈ 2.66 µm)

Figure 2.4: Fundamental vibrational modes of water vapor: symmetric streching (left),
bending (middle) and antisymmetric streching (right). Figure from Liou
(2002).

Beside these fundamental modes many other absorption bands of water vapor are ob-
served at shorter wavelength. These bands can be explained by the fact that molecules
are anharmonic oscillators. Therefore, their potential is not parabola-shaped. The ac-
tual form of the potential can be approximated by the Morse potential. Using the Morse
potential the Schrödinger equation can be solved analytically. The selection rules in this
case not only allow for ∆υk = ±1 but also for ∆υk = ±2,±3, ..., n . These transitions are
the vibrational overtones of a molecule. Their frequencies are correspondingly two, three,
..., n-times the frequency of the fundamental modes. It is also possible for the vibrational
quantum numbers of two fundamental modes to change simultaneously. If both quantum
numbers increase, the energy of the resulting bands is the sum of the individual transition
energies.

In this thesis, only the overtones of water vapor are of interest, because they are
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2.1 Radiative transfer

located in the solar spectrum and captured by the SWIR camera of the specMACS in-
strument. Figure 2.5 shows the transmission of solar radiation through a layer of water
vapor at wavelengths between 500 and 2000 nm, calculated using the libRary for ra-
diative transfer (libRadtran) (Mayer and Kylling, 2005) with two different absorption
parametrizations. The strongest and broadest absorption bands are located at about
1400 and 1900 nm, but absorption bands are also present at wavelengths as low as 600
nm.

The absorption by water vapor in the SWIR spectrum is used to discriminate clouds from
the oceanic background. The reason why this is necessary is the presence of sunglint. Its
properties are described in the next section.
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Figure 2.5: Water vapor absorption in the visible and short wave infrared solar spectrum
calculated with libRadtran (Mayer and Kylling, 2005). The transmission
through the atmospheric layer between surface and 1 km for the US Stan-
dard atmosphere is shown. The black curve was calculated using line-by-line
absorption from HITRAN (Gordon et al., 2017), for the blue curve, the REP-
TRAN parameterization with fine resolution was used. Figure by Bernhard
Mayer.

2.1.6 Sunglint

The term sunglint describes a common phenomenon occurring when the sunlight is re-
flected on a rough water surface as shown in figure 2.6. If the water surface is absolutely
calm, one can only see the specular reflection of the Sun’s disk. Most of the time wind
generates a rough water surfaces, because the friction on the boundary between the at-
mosphere and the water leads to waves. The inclination angle of these waves makes it
possible that sun-rays apart from the point of specular reflection are reflected towards
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Figure 2.6: Sunglint on the ocean around New Zealand. Image was taken from the Inter-
national Space Station (ISS). Image from NASA (2018).

the observer. The larger the inclination angle of the waves, the farther away from the
specular point light can be reflected towards the observer. Therefore the width of the
sunglint is a measure for existing wave slopes. The slope in turn depends on the wind
speed, because higher wind speeds can form higher waves with steeper slopes (Cox and
Munk, 1954).

These relations were empirically studied by Cox and Munk (1954). They used pho-
tographs of sunglint taken from a plane to derive a probability distribution of wave slopes
as a function of wind speed. They found an approximately Gaussian and isotropic distri-
bution of wave slopes. The mean square of the wave slope distribution increases linearly
with wind speed. However, for high wind speeds the mean square slope in the along wind
direction is larger than in the across wind direction. This introduces a skewness in the
Gaussian distribution of wave slopes.

The reflectance of the water surface not only depends on the wave slope distribution
but also on the refractive index of air and water, the wavelength of the electromagnetic
radiation and its polarization. All these parameters are required to solve the Fresnel’s
equations, which describe the reflection of radiation on the interfaces of different media.
Combining the distribution of wave slopes wit h the Fesnel’s equations makes it possible
to calculate the reflectance of water surfaces for arbitrary viewing geometries. Figure 2.7
shows the reflectance of a water surface for varying wind speeds and fixed solar zenith
angle (SZA) of 0◦ as a function of viewing zenith angles (VZA).

The dotted vertical lines indicate the typical field of view of the specMACS instru-
ment. This plot makes clear that for the data collected during the NARVAL II campaign,
sunglint is a frequently occurring feature. Therefore it is necessary to develop retrievals
– in this case a cloud detection algorithm – which are not affected by its effects.

12



2.2 Clouds - properties on different scales

40 30 20 10 0 10 20 30 40
viewing zenith angle [ ]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

re
fle

ct
iv

ity
 []

1 m/s
2 m/s
3 m/s
5 m/s
10 m/s

Figure 2.7: reflectance of the oceans surface using the parametrization by Tsang et al.
(1985) for different viewing zenith anlgles (VZA) and selected wind speeds.
The solar zenith angle (SZA) was set to 0◦. The vertical dashed lines mark
the typical field of view (FOV) of the specMACS instrument (±17.5◦).

2.2 Clouds - properties on different scales

Clouds are a fundamental feature of the Earths atmosphere and occur in a great variety
of shapes and sizes. They are an important field of research because they are involved
in many different processes in the climate system. Clouds influence the Earths radiation
budget by scattering and absorption of solar and terrestrial radiation, they keep the
troposphere mixed by moist adiabatic convection and are the major driver of the global
water cycle. Some of these micro- and macrophysical properties will be briefly described
and discussed in the following sections.

2.2.1 Basics on clouds

Clouds form when warm air rises, cools adiabatically during ascent and at some point,
when the air has cooled sufficiently to reach 100% relative humidity, the moisture con-
denses to form cloud droplets. Having a closer look at this process an important and
necessary ingredient making cloud formation only possible, comes into play.

Cloud condensation nuclei (CCN) are hygroscopic aerosol particles. On their surface
water molecules can accumulate instead of spontaneously forming a droplet by collision
of many water molecules directly from the gas phase. The accumulation on the surface
of a CCN has two advantages compared to droplet formation by pure water vapor:

1. The droplets radius starts at the size of the particle, which reduces the vapor pressure
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Figure 2.8: Raoult, Kelvin and Koehler-curves for a NaCl CCN with radius 0.01 µm. the
Koehler-curve results from multiplication of Raoult and Kelvin curves. Figure
from Gödde (2015).

at the droplets surface, due to the Kelvin effect, which states, that the vapor pressure
rises with stronger curvature of the water surface.

2. In the case of a water soluble CCN like sea salt, ions are dissolved in the droplet
which further reduces the vapor pressure of the droplet due to the Raoult effect.

Combining these two effects leads to the Koehler (Köhler, 1936) equation which describes
the vapor pressure above a curved water surface containing dissolved aerosol. Figure 2.8
shows the result of the Koehler equation for a NaCl-salt CCN with a 0.01 µm radius as
well as the contributions of the Raoult and the Kelvin effect. The vertical axis denotes
the ratio of the vapor pressure above a curved water surface containing dissolved CCN
and the vapor pressure above pure water with flat surface. In this case the Koehler curve
shows a maximum value of 1.014 at a radius of roughly 0.05 µm. This means the air has
to be supersaturated by more than 1.4% for the droplet to grow larger than this critical
radius.

CCN significantly reduce the vapor pressure on a droplets surface by enhancing the
droplet’s radius. Without CCN a droplet consisting of 58 water molecules for instance has
a five times higher vapor pressure compared to a flat water surface, which under realistic
atmospheric conditions would cause its rapid evaporation(Rogers, 1975).

The largest climate impact of clouds is the modification of the global radiation budget.
Clouds have different radiative properties depending on the wavelength of the radiation.
For wavelength larger than about 5 µm (longwave radiation) clouds strongly absorb and
emit radiation whereas they mainly scatter radiation in the visible and near infrared spec-
trum (shortwave radiation).
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Figure 2.9: Global annual mean state Earth’s energy budget from March 2000 to May
2004. Fluxes are given in Wm−2. Figure from Trenberth et al. (2009).

These two properties lead to counteracting effects in the Earth’s radiation budget.
Incoming solar radiation is partially scattered back to space, which reduces the energy
input. This effect is referred to as the shortwave cloud radiative effect (SWCRE). How-
ever, clouds absorb and re-emit thermal infrared radiation emitted by the surface, which
traps part of the radiated energy from Earth’s surface. This is called the longwave cloud
radiative effect (LWCRE). A schematic sketch of these processes is shown in figure 2.9.
According to studies by Chen et al. (2000), clouds reflect 53.5 Wm−2 of the solar short-
wave radiation in the global annual mean. This amount is incorporated in the 79 Wm−2

of reflected solar radiation on the upper left side of figure 2.9. The figure shows the
global energy budget and the involved fluxes of solar and thermal radiation as well as
sensible and latent heat transport. The contribution of clouds to the planetary albedo
can be estimated by taking the ratio between the flux of cloud-reflected and the total
reflected solar radiation shown in top-left branch of figure 2.9 (102 Wm−2). This calcula-
tion demonstrates that clouds are responsible for more than 50% of the planetary albedo,
which emphasizes their importance for Earth’s climate.

For the longwave effect Chen et al. (2000), calculated a positive effect of 20.1 Wm−2

on the global energy budget. This number cannot easily be assigned to a single branch in
the right part of figure 2.9, because it is a net effect resulting from the difference between
emitted downwelling and upwelling radiation. As the SWCRE dominates the LWCRE
on the global average, clouds have a overall negative effect of -33.4 Wm−2 on the global
energy budget (Chen et al., 2000).

In the following sections the optical properties of clouds leading to the above described
effects and a explanation for the strong shortwave effect of clouds will be given.
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2.2.2 Radiative properties

The optical properties of a cloud as a whole depend on the microphysical conditions like
the cloud phase, the effective droplet radius and the number concentration of droplets
within the cloud. For simplicity this section will only address liquid water droplets and
omit the ice phase.

The theory describing the interaction between electromagnetic radiation and spherical
particles is called Mie theory (Mie, 1908). With this tool the scattering by water droplets
can be calculated in detail. Important quantities in this context are:

• Size parameter x: It is defined as x = 2πrλ−1 where r denotes the radius of the
particle and λ is the wavelength of the radiation. The scattering and absorption
properties of a particle depend strongly on this relation.

• Complex refractive index N : Consists of a real part (nr) and a imaginary part
(ni) where the sum of both gives the complex refractive index: N = nr + i ni. The
real part describes the propagation of radiation in a medium and its behavior at
interfaces of media with different indices. The imaginary part reveals information
about the attenuation of the radiation or the absorption within a certain medium.
Both parts depend on the wavelength of the electromagnetic radiation. in the visible
spectrum their values for pure water are are nr ≈ 1.33 and ni ≈ 10−8 (Segelstein,
1981)

In this thesis light scattered by clouds in the short wave infrared spectrum (SWIR) scat-
tered is examined. To describe the scattering by clouds it is necessary to understand
the the scattering behavior of individual droplets. There are two main quantities used to
describe the scattering by cloud droplets. The first one is the scattering phase function
which reveals information about the probability that a photon will be scattered into a cer-
tain direction relative to the incidence direction. The angle between the initial direction
of the photon and the direction into which it is scattered is called the scattering angle Θ.
A scattering angle of Θ = 180◦ means that the photon is scattered back into the direction
it came from (reflection), whereas a scattering angle of Θ = 0◦ occurs if the photon*s
direction remains unchanged (see figure 2.10). The phase function P expressed in terms
of the cosine of the scattering angle: P (cos Θ).

The second quantity is the scattering efficiency Qsca. It is related to the scattering
cross section (σsca) defined in section 2.1.1 as the ratio of σsca and the geometrical cross
section (σgeo). A scattering efficiency of 1, means that the scattering cross section is equal
to the geometrical cross section of the object. The value of Qsca determines the optical
thickness of a cloud and therefore its optical properties.

To calculate these two quantities using Mie theory, the complex refractive index as
well as the size parameter of the particle must be known. A typical wavelength in the
SWIR is 1.2 µm, and radii of cloud droplets are usually as large as 10 µm. The equation
for the size parameter described above therefore yields a size parameter of x ≈ 50. The
real part of the refractive index is nr ≈ 1.32 and the imaginary part amounts ni ≈ 10−5

(Segelstein, 1981). The value of nr is close to the one given before for the visible spectrum,
ni is 103-times higher than in the visible spectral range, but still small.
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Figure 2.10: Polar plot of the scattering phase function P (cos Θ) for three different size
parameters calculated with Mie theory. Dashed curve: x = 0.01, lower solid
curve: x = 1, upper solid curve: x = 50. A complex refractive index of
N = 1.33 + 0i was used. Figure form Zdunkowski et al. (2007).

Calculating the scattering phase function for different size parameters and a complex
refractive index of N = 1.33 + 0i yields the result shown in figure 2.10. Mie phase func-
tions are rotationally symmetric with respect to axis of the incident light. Therefore, the
full phase function can be obtained by mirroring each curve on the horizontal axis. The
distance between each point on the phase function and the origin is P (cos Θ). For SWIR
radiation and cloud droplets, only the phase function for x = 50 is of interest. Compared
to the smooth phase functions that occur in the rayleigh limit (for futher information see
Zdunkowski et al. (2007)), the complexity of the structure increases due to the presence
of smaller and larger ripples. Another important feature is the strong peak in the forward
direction (Θ = 0), whereby the logarithmic axes should be noted. The strong forward
peak results in an asymmetry parameter close to unity. This is the reason why clouds
with small optical thickness, appear very bright even if they reside between the sun and
the observer.

Figure 2.11 shows the scattering efficiency as a function of the size parameter x, cal-
culated with Mie theory. The plot contains curves for different values of the imaginary
part of the refractive index, the real part is nr = 1.33 as before. One prevalent feature is
the strong oscillation of the scattering efficiency for spheres with small or zero complex
refractive index. These maxima and minima are due to interference of light transmitted
through and diffracted by the particle. The superimposed ripples are caused by light rays
barely touching the edge of the particle and traveling around it whereby small amounts
of energy are emitted in all directions. The fine structure as well as the large maxima and
minima are reduced at larger values of ni (κ) due to absorption. The larger the particles,
the longer the absorption path of light propagating through the particle which leads to
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Figure 2.11: Scattering efficiency Qsca as a function of size parameter x. Curves for differ-
ent values of the imaginary part of the complex refractive index κ (denoted
as ni in the text) are shown. Figure form Zdunkowski et al. (2007).

smoother curves and reduces Qsca. For scattering of SWIR radiation on cloud droplets,
the curve for ni = 0 in figure 2.11 is representative, as the imaginary part of the refractive
index of ater is roughly 10−5.

A remarkable property of the curve for ni = 0 is that it oscillates around a value of
Qsca = 2, which means that the scattering cross section is twice the geometrical cross sec-
tion. For a non absorbing particle (ni = 0) Qsca = Qext wherefore also the extinction cross
section is twice the geometrical one. This so called extinction paradox can be explained
by light being diffracted by the edge of the particle without being in direct contact with
it. Therefore, the particle also affects light rays apart from its geometrical surface. It
should be noted that the small difference between the refractive index of the calculations
presented and the one given as typical value for the SWIR spectrum does not change the
result decisively. It may would slightly change the position of minima and maxima and
the small ripples but the overall message of the figures 2.10 and 2.11 stays the same.

With the knowledge about the scattering properties of individual cloud droplets it is
now possible to asses the scattering behavior of a cloud. As a first step a equation for the
optical thickness of a cloud is derived according to equation (2.3).

The extinction coefficient βext was defined as the product of the extinction cross sec-
tion σext and the number density of scattering/absorbing particles n. The droplet number
density within a cloud can be cvalculated from geometrical considerations as

n =
3LWC

4π r3eff ρw
(2.13)

with the number density n in m−3, the effective droplet radius reff in m, liquid water
content LWC and the density of water ρw in units of kg m−3. The effective droplet
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radius of a cloud is calculated from the droplet size distribution and is representative for
the optical properties of the whole distribution (see Liou (2002) for a definition). For
spherical droplets also the extinction cross section can be defined in terms of reff and the
extinction efficiency:

σext = Qextπr
2
eff (2.14)

Qext is without units and σext has units of m2. As the absorption efficiency for the
considered SWIR radiation is close to 0 for cloud droplets, Qext andQsca are approximately
equal and are used interchangeably from now on. Assuming a homogeneous cloud with
constant LWC and reff throughout the cloud, the path integral of the optical thickness in
equation (2.3) reduces to a simple multiplication by the geometrical thickness ∆z of the
cloud, since βext is independent of the location within the cloud. Inspecting figure 2.11,
Qext ≈ 2 can be chosen as a good approximation. Using these simplifications together
with equations (2.13) and (2.14) yields an approximate formula for the vertical optical
thickness of the cloud

τcld ≈
3LWC

2 reff ρw
∆z (2.15)

The vertical thickness ∆z has unit of m, τcld is without units. This simple equation shows
the dependence of the optical thickness of a cloud on the parameters: LWC, reff and ∆z.

A larger LWC for fixed reff results in a larger number of cloud droplets that have a
higher cumulative surface, which to higher τcld. Therefore, it is more probable that light
entering the cloud is scattered. The opposite process occurs, when reff rises for fixed
LWC. A smaller number of large droplets has a lower cumulative cross section than many
small droplets for the same LWC, which decreases τcld. The variation of the geometri-
cal thickness of the cloud ∆z directly scales τcld by enlarging or reducing the light path
through the cloud. A longer path enhances the probability of a scattering event an vice
versa.

The property of interest for air or spaceborn observations, is cloud reflectance. To
asses the reflectance of a cloud, the scattering phase function of a cloud droplet and the
optical thickness of the cloud have to be related. On the one hand the phase function
contains information about the probability that a single photon is scattered into a cer-
tain direction. On the other hand the optical thickness is a measure for the number of
scattering events a photon encounters.

Considering an optically thin cloud of τcld = 3 and the sun at a zenith angle of 0◦

(noon at the equator), it is quite probable that a photon will be scattered (95%) if it en-
ters the cloud, but the number of scattering events will be 3 or less in most cases. As the
scattering phase function has a strong forward peak (see fig. 2.10), only a small fraction
of the photons will be scattered in backward direction (90◦ < Θ < 270◦) and leave the
cloud in upward direction. Therefore the cloud appears relatively dark from above. For a
cloud of τcld = 30, each photon will encounter a large number of scattering events. This
considerably enhances the probability for the photon to be scattered back towards space
which makes the cloud look way brighter. Of course, this effect saturates for large optical
thicknesses as transmission goes to zero.
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Figure 2.12: Net cloud radiative effect in the thermal infrared spectrum (LWCRE) for
water clouds at three different altitudes. The radiative transfer calculations
were performed using the DISORT solver from the libRadtran software pack-
age (Mayer and Kylling, 2005). The exact model-setup can be found in table
6.1 in the appendix.

Equipped with this micro- and macrophysical knowledge about clouds and their radiative
properties, the global role of shallow cumulus clouds will be discussed

2.2.3 Clouds and energy budget – a closer look

In section 2.2.1 the globally averaged contribution of clouds to the Earth’s energy budget
was described. Looking at this effect in more detail, it turns out that the contribution
of individual clouds to the global average, differs considerably. The magnitude of the
longwave cloud radiative effect (LWCRE) for instance, highly depends on the clouds’
temperature, because the amount of emitted radiation scales with its fourth power ac-
cording to the Stefan-Boltzmann law (eq. 2.6). This means, that a cloud near the surface
emits nearly as much longwave radiation as it absorbs, since surface and atmosphere be-
low radiate at similar temperature. Therefore, the LWCRE is small. On the contrary, a
high and cold cloud emits far less radiation than it absorbs, which leads to a high LWCRE
as shown in figure 2.12.

The shortwave cloud radiatve effect (SWCRE) also depends on the specific properties
and in particular on the optical thickness of the cloud. An optically thin cirrus cloud for
instance, reflects less solar radiation than a optically thick cumulus cloud and therefore
only has a small negative SWCRE.
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The net radiative effect of a cloud on the radiation budget is ultimately the result of
the sum of the shortwave and longwave effects at top-of-atmosphere (TOA). TOA defines
the outer boundary of the Earth’s atmosphere. If the climate system was in equilibrium,
the net flux at TOA would be zero. Therefore, determining the instantaneous change
in net radiation flux due to a certain disturbance – like for example a cloud – reveals
information about the influence of the disturbance on climate. A negative net flux means
that more energy leaves the Earth’s system than enters it, which leads to a cooling and
vice versa.

To assess the global cloud radiative effect, the contributions of all the different cloud
types in Earth’s atmosphere need to be taken into account.

2.2.4 Shallow cumulus convection

Shallow cumulus convection plays a crucial role in Earth’s climate system (Siebesma
et al., 2003). One important property of these clouds in the context of climate is their
interaction with radiation. As described in section 2.2.1 clouds on average have a negative
and therefore cooling effect on Earths climate, but the contribution to this negative effect
differs significantly with the properties of clouds (see previous section).

(Chen et al., 2000) split the global cloud radiative effect into contributions from
various cloud types. They found, that shallow cumulus clouds contribute significantly to
the overall negative effect of clouds. There are two major reasons for this disproportionate
influence. The first is that shallow cumulus clouds are located in the lower troposphere
and are only slightly colder than the Earth’s surface, which results in a small LWCRE
(compare figure 2.12). At the same time they are often optically thick and therefore have
a high reflectance (see section 2.2.2), yielding a high SWCRE. The second reason is their
high frequency of occurrence in the tropics and mid-latitudes.

Chen et al. (2000) used a satellite cloud climatology from the International Cloud
Climatology Project (ISCCP) and a radiative transfer model to investigate the radiative
effect of different cloud types on a global scale. They estimated the LWCRE of shallow
cumulus clouds to be 4 Wm−2. Their result for the corresponding SWCRE was −33.8
Wm−2. These numbers were derived by comparing the radiative fluxes for clear sky
and cloudy sky for otherwise equal meteorological conditions. The globally averaged net
effect of shallow cumulus clouds is −4.6 Wm−2, which is roughly 14% of the overall cloud
radiative effect.

Another important atmospheric process shallow cumulus clouds are involved in is the
Hadley circulation. It is driven by deep convection in the tropics called the intertropical
convergence zone (ITCZ). Shallow cumulus clouds that occur in the trade wind region
north and south of the ITCZ are referred to as trade-wind cumulus clouds. The enhanced
vertical transport of moisture by these clouds increases the evaporation from the oceans.
The concentration of water vapor in the trade-wind boundary layer is therefore higher
when convective clouds are present. The collected water vapor is then transported by
the trade winds towards the ITCZ where it releases its latent heat in deep convective
clouds. This process is illustrated in figure 2.13. The strength of convection depends on
the buoyancy of air masses, which increases through release of latent heat. Consequently,
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Figure 2.13: Sketch of the cross-section of the northern branch of the Hadley circulation.
Illustration of the enhanced moisture convergence due to higher evaporation
(Ev) in the presence of trade wind cumuli. Large scale subsidence north
(and south) of the ITCZ creates an inversion which prevents the cumuli from
growing to higher altitudes. Figure redrawn from Tiedtke (1987).

higher concentrations of water vapor lead to a stronger upwelling in the tropics and
consequently to an enhanced circulation. Therefore, shallow cumulus clouds upstream
of the ITCZ control the strength of the Hadley circulation and thereby influence the
transport of air masses on a global scale (Siebesma, 1998).

2.2.5 Cloud size distribution

Deriving cloud size distributions from air and spaceborne imaging instruments is an im-
portant step in evaluating the quality of cloud resolving models. Cloud size distributions
derived from measurements can not only directly be compared to the one occurring in
the model simulation, but also mass and energy fluxes calculated based on the measured
cloud size distribution serve as a proxy for model performance (Zhao and Di Girolamo,
2007).

According to the studies of Zhao and Di Girolamo (2007) the cloud size distribution of
cumulus clouds can objectively be best represented by the following power law equation:

n (D) = aD−λ (2.16)

where n(D) denotes the number of clouds with cloud area-equivalent diameter D. The
constants a and λ have to be determined by regression. This regression is most convenient
if one takes the natural logarithm of equation (2.16), which yields the linear function

lnn (D) = a− λ lnD (2.17)
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Figure 2.14: Cloud size distribution of cloud area-equivalent diameter D for data of all
152 examined ASTER satellite scenes. Clouds with D < 7 km are binned
with a bin-width of 100 m (solid step line). The solid line shows power law fit
according to equation (2.17) with λ = 2.85. The dotted step line represents
a direct power law fit. Figure from Zhao and Di Girolamo (2007).

In this form the constants can be determined by a linear least square fit. Zhao and
Di Girolamo (2007) applied this regression to 152 scenes captured by the ASTER (Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument
over the tropical western Atlantic. The cloud area-equivalent diameters were therefore
binned with a bin-width of 100 m. Using all available data the least square fit for the
cloud size distribution yields λ = 2.85. The histogram of this result is shown in figure
2.14. Investigating each day of data separately they find values for λ between 2.58 and
3.55.

It should be noted that the cloud size distribution, unlike the cloud fraction, does
not heavily depend on the accuracy of the cloud mask. Clouds can for example be de-
tected by using a brightness threshold to an image. A higher threshold in this case means
that, clouds have to brighter and therefore optically thicker (compare section 2.2.2) to
be detected. The smallest clouds may then not be detected anymore, but at the same
time only the parts of larger clouds which are bright enough to surpass the threshold
are labeled as cloudy. Increasing the threshold only removes the edges of larger clouds
in the cloud mask, because the optical thickness of cumulus clouds is usually larger in
their center where the strongest updrafts are present. Therefore λ will not change, but
the whole distribution will shift towards smaller clouds, because clouds of all sizes are
shrinking. Decreasing the threshold has the opposite effect: even smaller clouds will be
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detected and the clouds which were also detected with a higher threshold will grow in
size. This results in a shift of the cloud size distribution towards larger clouds and λ will
still stay the same (Zhao and Di Girolamo, 2007).

Observing a power law cloud size distribution in measurements leads to the question
of whether this natural behavior can be explained by a theoretical model. In the Phd thesis
by Windmiller (2017), a simple model based on percolation theory was developed, which
is able to predict observed cloud size distributions in the study of Zhao and Di Girolamo
(2007). Percolation theory deals with the behavior of randomly distributed objects and
the clusters which occur when individual objects overlap (Shante and Kirkpatrick, 1971)
– in this context the objects are clouds. The standard percolation model was modified
by enhancing the probability that clouds occur in the neighborhood of already existing
clouds. In nature this tendency towards clustering can for instance be supported by cold
pool cloud triggering (Windmiller, 2017).

To derive quantities like the cloud size distribution and cloud fraction it is necessary
to detect the clouds in the investigated images and obtain a cloud mask. The following
sections introduce common techniques for cloud detection and the error sources involved
in the detection process and cloud fraction determination.

2.3 Cloud mask and cloud fraction

Detecting clouds is an important task in the field of remote sensing for numerous reasons.
For example, if a retrieval for cloud microphysical properties (e.g. Nakajima and King
(1990)) is applied to a measurement it will only yield physically useful results if a cloud is
actually observed. Furthermore, the assessment of the Earths albedo is closely connected
to the amount of clouds in the atmosphere. To retrieve a cloud climatology, satellite
images are used to infer their global distribution by flagging individual measurements as
cloudy or clear. This was done in the International Cloud Climatology Project (ISCCP).
The classification of the data into ”cloud” and ”no cloud” results in a cloud mask.

This section presents common methods used to derive cloud masks and cloud fraction
together with the associated error sources.

2.3.1 Common techniques used for cloud detection

The automation of cloud detection using computer algorithms has given rise to a variety
of techniques that can be used to identify clouds in data of different imaging instruments.
A common and simple group of approaches arethreshold techniques. Thresholds are ap-
plied to many different measured quantities. The basic idea is that cloudy pixels differ
systematically from clear pixels in one or more measured quantities or combinations of
them.

One obvious feature of clouds is their high reflectance in the solar spectrum compared
to water and most of the land surfaces. This means that a threshold can be set for the
observed radiance. Pixels with radiances higher or equal to the threshold are assumed
to be cloudy, radiances lower than the threshold are labeled as cloud free. The simple
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Figure 2.15: Two-dimensional histogram of infrared channel 5 (11.5-12.5 µm) and visible
channel 1 (0.58-0.68 µm) for a scene captured by the AVHRR (Advanced Very
High Resolution Radiometer) satellite instrument. The frequency is shown in
the vertical (third) dimension. Figure from Goodman and Henderson-Sellers
(1988).

reflectance approach fails though, as soon as snow or ice covered land and sea surfaces
as well as bright deserts come into play. For these cases information from other spectral
regions sensitive to the existing conditions is necessary. The exact determination of the
threshold can be done either by visual inspection, the use of radiative transfer models or
with the help of statistics.

A second group of methods for cloud detection are statistical cloud retrievals, whereby
a large number of radiance measurements from one or more spectral channels is taken as
a reference data set. These measurements are then plotted in one or multidimensional
frequency histograms. Figure 2.15 shows a two-dimensional histogram using data of two
wavelength channels from the Advanced Very High Resolution Radiometer (AVHRR)
satellite instrument. In this plot several areas of high frequency form differently sharp
peaks. These peaks can be assigned to different classes, like sea surface, land surface, cloud
or even different cloud types. The major challenge using these statistical techniques is to
isolate the classes (peaks) from each other and in particular to separate cloud peaks from
all others.

This can for example be done by fitting a Gaussian distribution to each peak (Simmer
et al., 1982) or using dynamic clustering algorithms. The clustering algorithm developed
by Desbois et al. (1982) (adapted from Diday E. (1976)) iteratively identifies classes to-
gether with their center of gravity and the variance in a three dimensional histogram.

25



2 Background

Another statistical approach is given by spatial coherence algorithms. This method was
especially brought forward by Coakley and Bretherton (1982). They used the 11 µm
brightness temperatures from the AVHRR instrument and plotted the local standard de-
viation as a function of the local mean brightness temperature for an array of 8x8 pixels
respectively. The result of this procedure is shown in figure 2.16. Three categories can

Figure 2.16: Scatterplot of the local mean 11 µm brightness temperature against the local
standard deviation calculated from arrays of 8x8 pixels (≈ 32km2). The
brightness temperatures are taken from the AVHRR satellite instrument.
Points on the lower right side (red circle) belong to cloud free regions, points
clustered on the lower left side of the plot represent cloudy pixel arrays (blue
circle). Points in between at high standard deviations (orange rectangle)
result from partially cloudy pixel arrays. Figure adapted from Coakley and
Bretherton (1982).

be identified in this plot: cloudy, partially cloudy and surface. Points accumulated at
high brightness temperatures on the right hand side belong to cloud free surface pixel
arrays whereas the high density of points at lower temperatures of around 284 Kelvin is
due to cloudy pixel arrays. The points between these two boundaries with high standard
deviations, belong to partially cloudy pixel arrays and give the plot a arc shaped form.
The advantage of this method against all methods presented so far lies in its ability to
identify partially cloudy pixel arrays. For simple one-layer cloud decks even the sub-grid
scale cloud fraction can be estimated from the superposition of cloudy and clear sky radi-
ances. This method works well for surfaces with homogeneous temperature fields like sea
surfaces. Higher temperature variances over land distort the clear separation encountered
in figure 2.16 and therefore may introduce ambiguities.
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2.3 Cloud mask and cloud fraction

These statistical methods differ from threshold techniques in that features like clouds
arise from the analysis itself and are not the result of a priori assumptions about their
properties. Additionally, statistical techniques implicitly define thresholds by separating
classes in histograms. Therefore they can be used to interactively set thresholds for the
above described threshold techniques, because the statistics may change with time and
conditions.

A third class of cloud detection and retrieval methods involves the use of radiative trans-
fer models. Reynolds and Vonder Haar (1977) developed a set of simple equations which
make it possible to estimate the subgrid scale cloud cover of a single pixel or an array of
pixels from spectral radiance measurements in the visible and thermal infrared spectrum
at wavelengths of 0.6 and 11 µm respectively. This retrieval is based on the assumption
that bidirectional reflectance of the surface and clouds, the infrared emissivity, the solar
irradiance and the infrared emitted radiance of the surface are known. The measured
visible and infrared radiance is then reconstructed assuming a superposition of radiances
from cloud and clearsky visible reflection and infrared emissions. The contribution of
the cloudy radiance to the measured radiance then provides the estimate of the cloud
fraction.

Rossow et al. (1985) presented a more complex radiative transfer approach which
was part of the ISCCP cloud algorithm intercomparison. Compared to Reynolds and
Vonder Haar (1977) they included for example absorption by ozone, rayleigh scattering
and multiple scattering as well as varying surface reflectivty - in particular enhanced re-
flectance due to snow and reflectiviy of water surfaces. In a first step they used the model
to retrieve cloud optical thickness and cloud top height from visible (0.6 µm) and infrared
(11 µm) radiances assuming each pixel is entirely cloud covered. Pixels with an optical
thickness smaller than 0.4 or a cloud top altitude lower than 0.5 km were flagged cloud
free.

With the fast improvements in radiative transfer modeling in the last decades, these
two methods are of course far away from state-of-the-art radiative transfer methods but
their simplicity makes it possible to get a flavor of the ideas behind these methods without
having to go into to much detail.

A problem with all methods is that each one is only suitable for very specific envi-
ronmental conditions. Therefore, it is necessary to combine multiple of these methods
to obtain cloud detection algorithms applicable for a larger set of locations and condi-
tions. Additionally, information about the climatological mean state, surface properties
and even data from numerical weather prediction models (NWP) are used to develop
universal cloud detection algorithms.

One general cloud detection and classification algorithm was presented by Derrien and
Le Gléau (2005). This algorithm was designed for the Spinning Enhanced Visible and
Infrared Imager (SEVIRI) aboard the first Meteosat Second Generation (MSG) satellite.
The SEVIRI instrument measures 12 spectral bands located in the visible, near infrared
and thermal infrared. This large variety of available measurements across many different
spectral regions makes it possible to develop such a general cloud detection algorithm.
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This algorithm uses a multispectral thresholding technique whereby the applied tests
depend on conditions like illumination and geographical location. A great part of the
thresholds is computed interactively using radiative transfer models. The input data for
the computations are taken for instance from NWP forecasts and climatology maps. In
total 13 different test are used, which make use of the different spectral properties of
clouds, land and sea surfaces.

One interesting aspect of this algorithm is that it contains a test designed to detect
low clouds in the presence of sunglint. The reflectance of clouds at 3.9 µm compared to
the 0.6 µm is lower than for light scattered on the ocean’s surface, which makes it possible
to detect the clouds in this complicated situation. This spectral property of clouds can
not be used for the data used in this thesis, because only radiance at wavelengths between
0.4 and 2.5 µm are available.

After all cloud test have been applied, clouds are separated into 21 different cloud
types using spectral features already examined in the cloud detection step as well as
through comparison of the 10.8 µm brightness temperature to NWP forecast air temper-
atures.

This example shows that also recent highly complex cloud detection and classification
algorithms predominantly use rather simple threshold techniques together with statistical
approaches. The greatest challenge remains the determination of the optimal thresholds
for every test at every location for all possible meteorological conditions.

A rather simple sounding task, after cloudy pixels have been successfully separated
from clear ones, is to determine the cloud fraction of an image. The next sections a general
definition for cloud fraction is given and difficulties as well as sources of error involved in
its determination are discussed. Great part of the information in this sections is taken
from Di Girolamo and Davies (1997)

2.3.2 Definition of cloud fraction

Cloud fraction is in general defined as the fractional area coverage of cloud over a particular
background domain (Di Girolamo and Davies, 1997; Henderson-Sellers and McGuffie,
1990). This variable is an important parameter in atmospheric science. For example,
the quality of model simulations can be evaluated by comparing the cloud fraction of the
model to the cloud fraction derived from observations. Furthermore, cloud parameters in
climate models like cloud fraction are tuned to obtain the correct radiation balance for
the current climate Golaz et al. (2013). In the field of remote sensing and in particular
for satellite observations, the above definition is approached by computing the fraction of
pixels that contain clouds and are therefore flagged as cloudy. Even if this approach seems
reasonable and straight forward, it contains a large number of potentially detrimental error
sources.

2.3.3 Sources of error

Following Di Girolamo and Davies (1997), the problems associated with determining the
cloud fraction can be put into four main categories: cloud definition, cloud fraction def-
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2.3 Cloud mask and cloud fraction

Figure 2.17: Sketch illustrating the projection error in cloud remote sensing depending on
distance to the clouds and viewing zenith angle (VZA). Figure redrawn and
adapted from Henderson-Sellers and McGuffie (1990).

inition, resolution effects and threshold effects. The most fundamental issue of these, is
the actual definition of ”what is a cloud”. An important characteristic defining a cloud is
the presence of liquid water or ice particles, but there is no quantitative boundary for the
spatial extent or for the concentration of particles. The lack of a precise cloud definition
implicates the absence of a true cloud fraction. This fact makes it difficult to validate any
observational estimate of cloud fraction.

Choosing the correct threshold for the algorithm to separate cloudy from clear sky is
also linked to the problem of cloud definition. In addition, the threshold itself may needs
to be adapted depending on environmental conditions. The method used for adaptation
again potentially introduces errors which that can lead to an artificial variation of cloud
fraction in space and time.

The last source of error mentioned by Di Girolamo and Davies (1997) is the resolution
effect. The size of this error strongly depends on the ratio between the resolution of the
instrument and the typical extent of the observed clouds. For example, a resolution of 1
kilometer would be sufficient to get decent results for the cloud fraction in an environment
of large stratiform clouds like they appear in the vicinity of a mid-latitude warm front.
On the contrary, observing shallow cumulus clouds with diameters of a few hundred me-
ters with the same resolution leads to a significant over-estimation of the cloud fraction.
This is due to the fact that pixels are flagged as cloudy even if the subpixel cloud cover
is lower than 1. There is a possibility to account for these partially cloudy pixels by
making assumptions about the observed clouds such as their size distribution (Coakley
and Bretherton, 1982).

A source of error not addressed by Di Girolamo and Davies (1997), originates from
the viewing geometry of the instrument. In the case of broken cloud cover the cloud
fraction enhances significantly with rising viewing zenith angle (VZA). This effect is illus-
trated in figure 2.17. For large VZA illustrated by the field of view (FOV) of the aircraft
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(A) not only the projected area of the observed cloud increases (orange box) but the sky
may seems to be fully overcast because the cloud sides obscure the clear sky between two
neighboring clouds. Snow et al. (1985) showed that cloud fraction derived from satellites
(S) may also overestimate the earth view cloud fraction (E) due to cloud side effects
(Henderson-Sellers and McGuffie, 1990).

In the light of these many possible errors it seems problematic to tackle the task of
cloud detection at all, but the importance of clouds for weather and climate on Earth
makes it necessary.
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3.1 The NARVAL II campaign

The Next generation Aircraft Remote-sensing for VALidation studies (NARVAL II) mea-
surement campaign was carried out in the western tropical Atlantic near Barbados from
the 8th to the 31st August 2016. The campaign was lead by the Max Planck Institute
for Meteorology (MPI-M) and the University of Hamburg, supported among others by
Ludwig-Maximilians-University (LMU) Munich. The goal of the campaign was to get
better insight into the physical processes supporting convective self-aggregation. There-
fore the contribution of shallow convection and water vapor concentration to low level
radiative cooling was examined using remote sensing instruments and dropsondes. The
instruments were deployed aboard the research aircraft HALO (High Altitude and LOng
range research aircraft) operated by the German Aerospace Center. The instrumentation
included for example HAMP (HALO Microwave Package), WALES (Water Vapor Dif-
ferential Absorption LIDAR) and specMACS (spectrometer of the Munich Aerosol and
Cloud Scanner). The data captured by specMACS during the campaign are the basis
for this thesis. Therefore, characteristics and specifications of the instrument, which are
essential for the correct interpretation of the measurement data will be introduced in the
next section.

3.2 Hyperspectral observations with specMACS

Remote sensing is an important tool in atmospheric research for many decades. It pro-
vides the possibility to retrieve information about distant objects without being in direct
contact with them. One advantage of remote sensing systems is their aerial and temporal
coverage. There are a variety of remote sensing methods, which can be grouped into
active and passive techniques.

Using an active method means that electromagnetic radiation of a specified wave-
length is emitted by the instrument and the backscattered signal is detected by a sensor.
Examples for active techniques are LIDAR (Light Detection And Ranging) and RADAR
(RAdio Detection And Ranging). Passive methods only measure scattered solar radiation
or thermal infrared radiation emitted by objects under investigation.

The specMACS instrument (spectrometer of the Munich Aerosol and Cloud Scan-
ner), operated by the Meteorological Institute of LMU Munich (MIM), is a hyperspectral
imaginging spectrometer and therefore a passive remote sensing system. In the following
sections the basic principle of hyperspectral imaging is explained and the specMACS in-
strument is characterized. The generall information about hyperspectral imaging in this
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Figure 3.1: Illustration of a slit spectrometer similar to specMACS. Each data frame is
composed of one spatial and one spectral dimension. The second spatial di-
mension can be obtained by scanning the object under investigation. Figure
from Manolakis et al. (2016).

section is taken from Manolakis et al. (2016), and details about the specMACS instrument
are from Ewald et al. (2016).

3.2.1 Hyperspectral imaging

In a hyperspectral imaging system the incoming radiation is dispersed into the different
wavelengths it consists of and projected onto a sensor, which measures the energy for
each wavelength band. Therefore, each image captured with a 2D sensor consist of one
spatial and one spectral dimension. To get the second spatial dimension the system has
to scan the object of interest. This can for example be done by mounting the instrument
on an airplane and scaning the ground below by continuously taking images during the
airplane moves. The instrument design and the measurement principle as described above
is illustrated in figure 3.1.

The spectral information gained by these kind of measurements can then be used
to characterize the observed object. A common application is the classification of the
Earth’s surface. The Normalized Difference Vegetation Index (NDVI) can be used to
identify vegetation due to the different reflection of visible and near infrared radiation by
chlorophyll. It is also possible to detect man-made materials, like polyester, plastics and
building materials, which have a specific spectral signature.

In atmospheric science, hyperspectral imaging is used to retrieve trace gas concen-
trations, optical thickness clouds and aerosols, cloud phase and effective particle radius
(Ewald et al., 2013; Marion et al., 2004). The retrievals for these quantities are generally
more complex than for example the classification of vegetation using the NDVI. Lookupt-
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3.2 Hyperspectral observations with specMACS

Figure 3.2: Technical specification of the VNIR and SWIR camera of the specMACS in-
strument. Figure from Ewald et al. (2016)

abels have to be calculated using radiative transfer simulations, where different parameters
like solar zenith angle or cloud optical thickness are varied. The masurements are then
compared to the simulations to obtain the investigated quantity. A famous retrieval for
optical thickness and effective droplet radius of stratiform clouds was developed by Naka-
jima and King (1990) comparing the cloud reflectance at 0.75 and 2.16 µm wavelength.
This approach works well for scenes, that can be approximated well as a one-dimensional
problem, such as optically thick stratiform clouds. However, as soon as three dimensional
effects like shadows are involved, the retrieval delivers ambiguous results (Ewald et al.,
2013). This example shows the advantages as well as the challenges associated with the
use of hyperspectral imaging techniques in the field of atmospheric research.

3.2.2 Instrument characterization

The specMACS instrument is a hyperspecrtal imager, which consists of two spectral
cameras, covering a wavelength range from 400 to 2500 nm. One camera covers the
visible and near infrared part of the spectrum (VNIR) from 400 to 1000 nm, and the
second measures in the shortwave infrared spectrum (SWIR) from 1000 to 2500 nm. The
spectral bandwidth of the VNIR camera has a typical range between 2.5 and 4 nm, and
the bandwidth of the SWIR camera is typically 7.5 to 12 nm. Further specifications
of the instrument can be found in the table 3.2, and an image of both cameras during
ground-based operation is shown in figure 3.3.

The sensor of the SWIR camera, which is most relevant for this thesis, has 320 spatial
and 256 spectral pixel. It has a field of view (FOV) of 35.5◦ which corresponds to a swath
of 6.4 km at a vertical distance of 10 km. The resolution of a single pixel at the same
distance is 18 m in along-track and 38 m in across-track direction. A typical spectrum
measured by the SWIR camera is shown in figure 3.4.
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Figure 3.3: Picture of the specMACS instrument consisting of the VNIR and SWIR cam-
era during ground-based operation. Figure from Ewald et al. (2016)

A common measure of the technical quality of a measurement is the signal-to-noise
ratio (SNR). This quantity is used in this thesis to flag measurements, that are of too
low quality to be interpreted properly. The SNR of the SWIR camera refers to the dark-
current-corrected signal S0. S0 is obtained by subtracting the dark-current signal Sd from
the raw signal S (S0 = S−Sd) which is the output of each pixel in form of a digital number
(DN). The noise σN of the SWIR camera signal is defined as the standard deviation of
500 consecutive measurements (camera frames) and follows the empirical relation

σN =
√

0.015S0 + 4.772 (3.1)

Using the so defined standard deviation, the SNR is calculated like

SNR =
S0

σN
(3.2)

This equation can be applied to every spectral channel of each spatial camera pixel.
Spectral channels in regions of strong atmospheric absorption or at large wavelengths (i.e.
> 2 µm) receive less radiation than other channels and have therefore generally lower
SNR.

specMACS has been operated during ground based campaigns like ML-CIRRUS as
well as aboard the HALO research aircraft during airborne campaigns like ACRIDICON-
CHUVA, NARVAL II and NAWDEX. During NARVAL II and NAWDEX specMACS was
mounted at the rear of HALO viewing vertically downward to observe clouds from above.
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Figure 3.4: Typical spectrum measured by the SWIR camera. The strong absorption
bands at 1125 nm, 1375 nm and 1900 nm are due to water vapor absorption.
The spectrum was simulated with libRadtran (Mayer and Kylling, 2005). For
the exact setup see table 6.2.

3.3 Radiative transfer simulations with libRadtran

In this thesis a large number of radiative transfer calculations was performed using the
library for Radiative transfer (libRadtran) (Mayer and Kylling, 2005). The calculations
were used to simulate the influence of water vapor concentration on the spectrum measured
by the SWIR camera and to validate the developed algorithm against model data. The
basic setup for these calculations and methods for simulating the spectra measured by
the SWIR camera are presented in this section.

3.3.1 Basic setup

For the case of optically thick clouds with a horizontal extend of a few kilometers a one
dimensional solution of the radiative transfer yields decent results. To model these cases
the 1D Discrete Ordinate Radiative Transfer solver (DISORT) (Stamnes et al., 1988;
Buras et al., 2011) from libRadtran was used together with the REPTRAN (representa-
tive wavelength approach) band parametrization for molecular absorption and its coarse
resolution option. DISORT solves the radiative transfer equation under the assumption
that variation of atmospheric constituents and cloud properties only occur in the verti-
cal direction. As the measurements during NARVAL II exclusively took place over the
Atlantic ocean, the BRDF (Bidirectional Reflectance Distribution Function) of the ocean
surface was parameterized using the method described by Cox and Munk (1954). The
calculated spectrum ranges from 1000 to 2500 nm with a spectral resolution of 15 cm−1

equidistant in wavenumber, corresponding to a wavelength resolution of 1.5 − 9.34 nm
within the used wavelength range.
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Clouds were assumed to be homogeneous, meaning effective radius (reff ) and liquid
water content (LWC) are constant throughout the cloud. The cloud base was set to 600
m – a typical value for trade wind cumuli according to Siebesma (1998) – and the vertical
extent to 200 m. Together with a LWC of 1 gm−3 and an effective radius of 10 µm the
model cloud has an approximate optical thickness of τ = 30 following equation (2.15).
To model the geometry during NARVAL II the virtual sensor was placed at an altitude
of 10 km looking vertically downward onto the cloud and the solar zenith angle (SZA)
was set to 0◦. The different input parameters and settings for these 1D calculations are
summarized in tabular form in the appendix (see chapter 6).

Beside the 1D simulations also 3D radiative transfer simulations were conducted, to obtain
a data set to validate the performance of the developed cloud detection algorithm. For
this purpose the 3D solver MYSTIC (Monte Carlo code for the physically correct tracing
of photons in cloudy atmospheres) (Mayer, B., 2009) was used with input of realistic
clouds from a large eddy simulation (LES) model. The MYSTIC and LES simulations
were conducted by Fabian Jakub. MYSTIC solves the radiative transfer equation (2.4)
exactly without any further assumptions, by tracing each photon on its way through the
atmosphere. The detailed setup for the MYSTIC simulations can be found in table 6.4
in the appendix.

3.3.2 Simulating specMACS

To explicitly simulate the specMACS instrument the spectra calculated with libRadtran
are convolved with a slit function for the respective sensor. Ewald et al. (2016) character-
ized the spectral response function for each spectral channel and calculated full width half
maximum (FWHM) values for a representative Gaussian-shaped function. These FWHM
values where used to set up a Gaussian spectral response function for each of the 256
spectral channels of the SWIR camera yielding the needed slit function.

This method was used to simulate reference spectra for the cloud retrieval, investigate
the sensitivity to water vapor concentration, and validate the retrieval against model data
as described in following sections.

3.4 Cloud detection using absorption by water vapor

The main goal of this thesis was to develop an efficient and reliable algorithm to detect
clouds in the data captured by the specMACS instrument during the NARVAL II cam-
paign. The major challenge was to detect the clouds even in the presence of sunglint,
where brightness can not be used to distinguish cloudy from clear sky pixels. Depending
on the wind speed the reflectance of the oceans surface can be significantly higher as the
one of clouds. If only a brightness threshold is used, the cloud detection will not yield
decent result. Either a great part of sunglint contaminated clear pixels is classified as
cloud when the threshold is set too low, or the amount of clouds is dramatically underes-
timated if the threshold is set too high, to make sure that the sunglint is masked out. This
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Figure 3.5: Left: Image of 3D MYSTIC panorama simulation using ocean BRDF by Cox
and Munk (1954) with a wind speed of 2 ms−1. The clouds were taken from a
LES (Large Eddy Simulation) model. Right: Brightness threshold applied to
the left image to distinguish surface and cloud pixel. Location of sunglint is
highlighted by the green circle, areas where cloud detection obviously fails are
marked by red circles. MYSTIC simulation and figure by Bernhard Mayer.

threshold problem is shown in figure 3.5. Here the threshold is still chosen too low (green
circle), but several cloud areas are already wrongly classified as clear (red circles). Due
to the measurement geometry – specMACS was pointed nearly vertically downward from
the plane – and the low solar zenith angle (SZA) in the tropics, a significant fraction of
measurements during NARVAL II are contaminated with sunglint in each research flight
(RF). To overcome this problem a method based on the absorption of water vapor was
developed which is described in the following sections.

3.4.1 Basic concept

The concept of using water vapor absorption to detect clouds was already proposed by
Gao and Kaufman (1995). They used the strong short wave infrared (SWIR) absorption
of water vapor to detect cirrus clouds from satellites. In an environment without cirrus
clouds, solar radiation reaches the low regions of the troposphere before it is reflected by
low-level clouds or Earth’s surface. It then travels back through the entire atmosphere be-
fore it is detected by the satellite. In the presence of cirrus clouds a considerable amount
of the solar radiation is already reflected in the upper troposphere. Due to the signifi-
cantly shorter light path, and therefore lower optical thickness of water vapor, there is
less absorption in the presence of cirrus clouds. This difference is further enhanced by the
much higher concentrations of water vapor near the surface, which results in even lower
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Figure 3.6: Simulated spectra of the SWIR camera using libRadtran DISORT solver. The
figure shows the water vapor absorption bands at 1125 (left) and 1375 nm
(right) for three cases: surface without cloud (blue), cloud at 0.6 − 0.8 km
(orange) and cloud at 1.8 − 2.0 km (green). The spectra are normalized to
their respective maximum within the shown wavelength intervals to make the
difference in absorption visible.

radiance measurements when no cirrus clouds are present.
So far this method was exclusively used to detect high clouds like cirrus, but it is

possible to apply the basic idea of this concept for the detection of shallow cumulus clouds
above the tropical ocean. When the sunlight is scattered at ocean’s surface it travels a
longer path and penetrates the atmosphere close to the surface with higher water vapor
concentrations than light scattered by clouds a few hundred meters above. Nevertheless
the path difference is significantly lower than between cirrus and no-cirrus scenes, leading
to smaller radiance differences. Additionally only the weak absorbing wings of the strong
water vapor bands can be used, as nearly all the radiation is absorbed in their center. To
detect the small radiance difference between cloudy and clear sky pixels, high resolution
and high precision measurements like provided by specMACS are necessary.

Figure 3.6 shows two details from three simulated spectra for the SWIR camera in
regions of strong water vapor absorption, centered at roughly 1125 and 1375 nm. The
spectra are normalized to their respective maximum radiance within the considered wave-
length interval, because the relative difference between the maximum radiance and the
radiance within the absorption band provides information about the amount of absorp-
tion. As expected, the highest absorption occurs if no cloud is present (blue) and the
light is scattered on the oceans surface. The absorption for a very low cloud (orange) is
slightly smaller than for the clear sky case, whereas the absorption reduces significantly
if the cloud is located at higher levels (green).

The basic approach to evaluate the absorption by water vapor from spectral radi-
ances measured by the SWIR camera and the manner in which this information is used
to identify clouds, is described in the following section.
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3.4 Cloud detection using absorption by water vapor

Figure 3.7: Sketch of measurement geometry during Narval II campaign. Solar radiation
enters atmosphere under solar zenith angle (SZA) is reflected on top of a cloud
and received by specMACS under a viewing zenith angle (VZA). the blue
shading illustrates the presence of water vapor and its vertical gradient. τv,λ
denotes the vertical optical thickness of water vapor at a certain wavelength
(λ) between cloud top and the elevation of the instrument.

3.4.2 Implementation and its physical basis

As explained before the differences in absorption between light scattered by a low-level
cloud or by the oceans surface is small. Therefore a reference is needed to compare the
measured spectra to and then decide whether the spectrum belongs to a cloud or the
surface. This comparison is set up as follows: First a reference SWIR camera spectrum is
simulated with libRadtran for the geometry shown in figure 3.7. The sensor is placed at
an altitude of 10 km, which is a typical cruise altitude of the research aircraft. Viewing
zenith angle (VZA) and solar zenith angle (SZA) are chosen to be zero degrees. Pressure,
temperature and trace gas concentrations were taken from the tropical standard atmo-
sphere (Anderson et al., 1986). One spectrum is simulated with molecular absorption
and a second, switching off molecular absorption. These spectra are convolved with the
slit function of the SWIR camera to explicitly simulate the instrument as described in
section 3.3.2. The result of these simulations is shown in the upper panel of figure 3.8.
Further details about the calculation of the reference spectra can be found in table 6.2 in
the appendix.
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Figure 3.8: Upper panel: Simulated reference spectra with (blue) and without molecular
absorption (orange). Lower panel: Reference spectral transmission obtained
using equation (3.3) with the spectra in the upper panel. Only wavelengths
lower than indicated by the dotted vertical line are used in th cloud retrieval.

From these two spectra the spectral transmittance T (λ) of the reference spectrum
can be calculated following equation (2.9)

T (λ) =
Labs,λ
Lnoabs,λ

= exp [− τpath,λ] = exp

[
−
(

τv,λ
cos(sza)

+
τv,λ

cos(vza)

)]
(3.3)

Labs,λ denotes the spectral radiance simulated with molecular absorption, Lnoabs,λ the one
without molecular absorption. τpath,λ represents the spectral optical thickness along the
light path. τv,λ is the vertical optical thickness of water vapor between the scattering
cloud/surface and the altitude of the sensor illustrated in figure 3.7. As SZA and VZA
were set to zero in the reference simulation and cos(0) = 1, the total optical thickness
along the light path is simply two times the vertical optical thickness (τpath,λ = 2 τv,λ).
This formulation contains the assumption that the optical thickness of water vapor above
the cruise altitude of the plane is small for the flanks of the water vapor vapor bands
and the relatively weak band at 1125 nm (see figure 3.6). The center of the strong

40



3.4 Cloud detection using absorption by water vapor

absorption bands at 1375 and 1900 nm are not of interest as they do not contain any
information because all the radiation is absorbed (see figures 3.6 and 3.8). Furthermore
it is important to mention that τλ is not the true monochromatic optical thickness. The
reference spectrum was calculated at a certain resolution, which yields averaged radiances
over spectral intervals. Additionally this spectrum is convolved with a Gaussian slit
function, which again averages the radiances. Therefore τλ should be seen as an weighted
average optical thickness over irregular wavelength intervals ∆λ.

The result of this transmittance calculation is shown in the lower panel of figure
3.8. The strong absorption bands due to the vibrational overtones of water vapor can
be identified at roughly 1125, 1375 and 1900 nm wavelength. The two consecutive dips
above 2000 nm are due to absorption by CO2. This transmission spectrum serves as a
reference for the spectra measured by the SWIR camera of specMACS. As the presented
cloud detection approach only uses absorption by water vapor, wavelength above 1900
nm are excluded from further considerations.

The comparison between the simulated reference spectra and the measurements is
realized in form of a least square fit. This fit is intended to reconstruct the measured
spectra from the simulated reference spectrum without absorption and the corresponding
transmittance. The multiplication of those yields the reference spectrum with molecular
absorption. To reconstruct spectra with arbitrary brightness and transmittance two fit
parameter are introduced in the following way

Lmeas,λ = a · Lref,noabs,λ · (Tref,λ)x (3.4)

Lmeas,λ denotes the measured radiance at wavelength λ, Lref,noabs,λ the spectral reference
radiance without absorption and Tref,λ the spectral reference transmittance. The parame-
ter a scales with the brightness of the measured spectrum. The exponential fit parameter
x scales the transmittance and is a measure of absorption. This scaling can be related to
the optical thickness along the light path

(T (λ))x = (exp [− τpath,λ])x = exp [− τpath,λ · x ] (3.5)

Therefore x directly scales the optical thickness. For x > 1 the absorption in the measured
spectrum is larger than in the reference spectrum, whereas the opposite is true for x < 1.
Figure 3.9 shows the variation of the reference transmittance for different values of x. In
fact equation (3.5) is only physically correct if x = x(λ) because the change in optical
thickness is generally different for each wavelength. This dependence on wavelength of
both, x and a, is not considered in the fit. Therefore both quantities rather represent
average measures for the brightness and optical thickness – in the way that they minimize
the deviation between reference and measurement – relative to the reference spectrum
than solid physical quantities.

The fitting algorithm was implemented using the Python library Theano. To save
computational time and exclude the absorption by CO2 as mentioned before, only wave-
length between 1015 and 1900 nm are included in the fit. The wavelength channels
between 1000 and 1015 nm are excluded due to higher instrument inaccuracy in this re-
gion. Before the fit was applied, the measurement data had been smoothed using a 3x3
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Figure 3.9: Variation of the reference spectral transmission applying values of the fit pa-
rameter x according to (3.5). The wavelength interval between 1050 and 1250
nm is shown for x = 1.3 (green) x = 1 (blue) and x = 0.7 (orange).

Gaussian smoothing kernel. This was done to reduce irregularities in the measured spec-
tra and receive consistent results. In the next section the determination of the threshold
using the fit parameter x will be described. Hereafter x will also be referred to as path
parameter as it is related to the length of the light path.

3.4.3 Threshold determination

To use the fit parameter x as a measure for the presence of clouds a threshold has to
be defined. For values of x larger than the threshold the measurement is assumed to
originate from light reflected at the surface and is therefore classified as clear sky or
non-cloudy. For x ≤ threshold, it is assumed that the light was scattered somewhere
above the surface, due to the presence of a cloud. Those pixels are therefore classified
as cloudy. The concentration and vertical distribution of water vapor in the tropical
standard atmosphere, which was used to calculate the reference spectrum (see previous
section), does not represent the actual environment during the measurement. Therefore,
the threshold can in general not be determined exactly by radiative transfer simulations
but has to be manually tuned using a partly cloud covered scene from the measurements.

An undesirable property of the measurements is, that there is no ”truth” to compare
the retrieved cloud mask to, like it is possible for model data. The best estimate for the
threshold is therefore generated by visual inspection of the camera images and contour
plots of the cloud mask drawn onto the camera image. The determined threshold is no
constant value but depends on SZA and VZA because the light path and therefore the
optical thickness increases with increasing SZA and VZA. Combining equations (3.5) and
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3.4 Cloud detection using absorption by water vapor

Figure 3.10: Scene used to tune the threshold captured by the SWIR camera during RF6
starting at 16:40 UTC. Upper panel: Grayscale image of the 1600 nm radi-
ance. Lower panel: Contour plot using the cloud mask obtained by applying
the tuned threshold to the fit result for the parameter x. The SZA for this
scene is approximately 20◦.

(3.3), the threshold transmittance can be written as

exp [− τthres(sza, vza, λ)] = exp

[
−
(
τv,λ,ref

cos(sza)
+

τv,λ,ref
cos(vza)

)
· xthres,std

]
(3.6)

τthres(sza, vza, λ) denotes the threshold optical thickness as a function of SZA, VZA and
wavelength λ. Its value is obtained by weighting the reference vertical spectral optical
thickness τv,λ,ref by the cosine of the SZA and VZA, and multiplying it by the reference
threshold fit parameter xthres,std. In this context the subscript std stands for the thresh-
old at sza = vza = 0. As mentioned before, the fit parameter x does not depend on
wavelength. Therefore, all τv,λ,ref are scaled by the same value. In a next step the goal
is to determine the relation between the standard threshold and the threshold of the fit
parameter x for arbitrary SZA and VZA. Taking the natural logarithm of equation (3.6)
yields

τthres(sza, vza, λ) =

(
τv,λ,ref

cos(sza)
+

τv,λ,ref
cos(vza)

)
· xthres,std (3.7)
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Dividing equation (3.7) by 2 τv,λ,ref , which is equal to the total optical thickness along
the light path for sza = vza = 0, gives the threshold for the fit parameter x depending
on SZA and VZA

τthres(sza, vza, λ)

2 τv,λ,ref︸ ︷︷ ︸
=:xthres(sza,vza)

=
1

2

(
1

cos(sza)
+

1

cos(vza)

)
· xthres,std

xthres(sza, vza) =
1

2

(
1

cos(sza)
+

1

cos(vza)

)
· xthres,std

(3.8)

xthres(sza, vza) denotes the threshold for x for arbitrary SZA and VZA. Although the
ratio of threshold and reference optical thickness depends on wavelength, xthres(sza, vza)
does not. The reason is again, that the fit parameter x does not depend on wavelength but
scales all wavelengths equally. Therefore, also the threshold can and must not depend
on wavelength. The boxed result of equation (3.8) is important, as it defines how the
threshold for the actual conditions can be calculated from the standard threshold xthres,std.

As described above, the standard threshold is set by visual inspection. This is realized
by selecting an appropriate scene, which contains clouds of different sizes and structures
as well as sunglint. Of course this selected scene does in general not fulfill the requirement
sza = vza = 0 of the standard threshold. This is also the case for the scene shown in figure
3.10, which was selected selected to tune the threshold for the NARVAL II specMACS
data. Here the SZA is roughly 20◦. Therefore, equation (3.8) has to be rearranged to
calculate the standard threshold from the threshold tuned to the selected scene

xthres,std = 2

(
cos(szat) cos(vzat)

cos(szat) + cos(vzat)

)
xthres(szat, vzat) (3.9)

The index t denotes the respective values of SZA and VZA for the tuned threshold. To be
able to calculate the threshold for each measurement, SZA and VZA have to be known.
The BAHAMAS instrument aboard the HALO research aircraft provides data on aircraft
position, altitude and flight geometry (e.g pitch and roll angle) at a frequency of 100 Hz.
These data can be used calculate the VZA of the SWIR camera as well as the local SZA.
To calculate the SZA from position, altitude and time, the Python library PyEphem was
used, which provides high precision astronomical computations.

For the scene shown in figure 3.10 the threshold was tuned in following way: First
the least square fit with the fit function (3.4) was applied to the scene, to retrieve the
fit parameter a and x. In a second step the dark regions of the scene were masked
using a threshold for the brightness parameter a. The reasoning for this will be given in
the next section. Now different thresholds for x were tested. Thereby the value of the
threshold was corrected for the VZA of each pixel before it was applied to the image. The
optimal threshold was determined to be xthres(szat, vzat = 0) = 0.8358. This value was
corrected according to equation (3.9) with szat = 20.6◦ yielding a standard threshold of
xthres,std = 0.81. This threshold will be slightly changed in section 3.4.6.
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3.4 Cloud detection using absorption by water vapor

3.4.4 Brightness and noise mask

In cases where the sunglint does not enhance the reflectance of the oceans surface within
the field of view (FOV) of the SWIR camera or clouds shade the surface, the fitting
approach presented in the previous section fails. It was observed that the fit parameter x
was generally underestimated in those underexposed regions leading to a considerably high
false detection rate for clouds. The cause for this failure is on the one hand that the signal-
to-noise ratio (SNR) for dark regions is small and the measurements are possibly of to low
quality to be interpreted properly. On the other hand the light received by the camera
in regions with low surface reflection is due to light scattered between the instrument
and the surface. As the scattering by air molecules is very small for SWIR radiation,
scattering is only efficient in the presence of aerosol. In fact considerable amounts of
aerosol where observed during NARVAL II, which originated for instance from Saharan-
dust transported over the Atlantic. To overcome this problem, dark regions need to be
masked out to avoid false detection.

The first measure to identify dark regions is the signal-to-noise ratio (SNR) of the
SWIR camera, which was described in section 3.2.2. For each measurement an average
SNR is calculated for the flanks of the water vapor absorption bands and compared to
a threshold. This threshold was set to 40 which is a rather low value. The reason for
this choice is the dependence of the SNR on the integration time (exposure time) of the
camera. For the same scene but different exposure times the SNR fluctuates significantly
which could result in wrongly masking a cloudy pixel as noise if the threshold is set to
high. This would mean that the retrieved cloud mask potentially depends on the exposure
time which would be a undesirable issue. Additionally it turned out that the SNR mask
does not perform well for cloud shadows.

Therefore, the brightness fit parameter a obtained from the fit, is used as a second
measure mask dark pixels. This value is based on the actual brightness of the measured
spectrum and independent of integration time. The threshold was also estimated by
visual inspection and set to a = 0.62. It was payed great attention to set the threshold
low enough to avoid masking of clouds and high enough to reliably mask shadows and
dark regions. As brightness is also a simple but effective measure to detect clouds in front
of a dark background, this brightness mask is used as a cloud mask when no sunglint is
present. How sunglint contaminated measurements are separated from dark background
will be explained in the next section.

3.4.5 Sunglint simulation

Although a large fraction of the specMACS data collected during NARVAL II campaign is
contaminated by sunglint, for large SZA in the morning and evening hours the reflectance
of the ocean surface is small. In these cases it is possible to use the above described
brightness cloud mask instead the approach using water vapor absorption. It is useful to
do so, as the water vapor cloud mask loses accuracy for large SZA due to 3D effects in the
radiative transfer. If the sun is at low elevation clouds can throw shadows on themselves
or neighboring clouds. Radiation from these shaded regions reaching the camera sensor
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Figure 3.11: Comparison of the sunglint simulation (upper panel) with the radiance at
1600 nm measured by the SWIR camera (lower panel). The scene was cap-
tured during research flight 6 between 17:07 and 17:09 UTC.

traveled a longer path than illuminated cloud regions, which is due to multiple scattering.
Therefore, the threshold adaptation which assumes 1D clouds and simple reflection at
cloud top, can not account for these cases. As a result shaded cloud regions are possibly
labeled as non-cloudy because of the higher absorption resulting from the longer light
path.

To be able to decide which cloud mask approach is appropriate for each camera
frame, the ocean reflectance was simulated using the BRDF parametrization by Tsang
et al. (1985). A required input parameter for this simulation is the relative azimuth
angle between the viewing direction of each pixel of the SWIR camera and the solar
azimuth angle. For this purpose the viewing vector of each pixel and each measurement
is transformed to a local horizon coordinate system in the following way

~p = (sin(act), sin(alt) cos(act), cos(alt) sin(act)) (3.10)

~p denotes the viewing vector in the local horizon coordinate system, act the across-track
viewing angle of the pixel, and alt the along-track angle. The vector ~s of the sun’s position
is determined by

~s = (sin(sza) cos(azi), sin(sza) sin(azi), − cos(sza)) (3.11)

SZA describes the solar zenith angle as before and AZI the solar azimuth angle. The three
entries of the local horizon coordinate system are [north, east, down], whereby the down
component is similar to a −z-axis. The position of the sun for the respective measurement
has been calculated using BAHAMAS position data together with the PyEphem library.

These two vectors of the sun’s position and the viewing direction of the camera pixels
are then projected on the north-east-plane to calculate the relative azimuth angle between

46



3.4 Cloud detection using absorption by water vapor

them. Together with the VZA and SZA all input parameter are available except the wind
speed. As the wind speed is an unknown variable it introduces an uncertainty in the
reflectance calculation. Having a look at figure 2.7, it is useful to choose a high wind speed
to make sure that the reflectance at high relative azimuth angles is not underestimated.
Several test calculations revealed that a wind speed of 5 ms−1 is a good approximation
for many research flights, especially for RF6 which will be further examined at a later
stage.

The BRDF parametrization by Tsang et al. (1985) is contained in liRadtran package
as C-code. This function was incorporated in a Python program with the help of a C-
Wrapper. The final result is the ocean reflectance for each pixel and each measurement
during a whole research flight. The result of such a simulation is shown in figure 3.11,
where the ocean’s reflectance changes rapidly due to course corrections of th aircraft.
These data are subsequently used to evaluate a sunglint mask which discriminates the
measurements in sunglint contaminated and dark background. This is done by applying
a reflectance threshold of 0.005, meaning that pixels with surface relectance higher than
0.5% are labeled as sunglint contaminated. Choosing a low threshold is necessary to
prevent errors due to the uncertainty in wind speed and make sure that regions classified
as dark are actually dark in the measurements. The best estimation for the cloud mask
is finally generated by merging the brightness and water vapor cloud mask according to
the sunglint mask.

3.4.6 Water vapor variability and threshold adaptation

A big challenge in using water vapor absorption for cloud detection arises from the high
temporal and spatial variability of water vapor concentration. From one research flight
(RF) to the next or even during one RF, the water vapor concentration can vary signif-
icantly as the flight time amounts up to 10 hours and distances of nearly 10000 km are
traveled. Figures 3.12 and 3.13 show the integrated column water vapor concentration for
RF6 and RF7 respectively. During RF6 the concentration shows rather low variability
along the flight track and amounts roughly 1.2 · 1023 cm−2. For RF7 the situation is con-
siderably different. The water vapor concentration along the flight track is more variable
and reaches values as large as 2 ·1023 cm−2, which is nearly twice the concentration during
RF6.

A strong change in water vapor concentration implicates a strong change in absorp-
tion, which can cause a failure of the cloud mask. When the water vapor concentration is
lower than in the scene used to tune the threshold, light reflected on the ocean’s surface
may experience less absorption than light scattered by a low cloud in the reference envi-
ronment. This means, that clear pixels would be classified as cloudy using the reference
threshold. Reversely, water vapor concentrations higher than the reference would lead to
a underestimation of the cloud amount, as light scattered by a cloud would have expe-
rienced more absorption than in the reference scene and would therefore be classified as
non-cloudy.

To overcome the problem of the the water vapor variability the threshold needs to be
adapted according to the actual concentration of the environment at the place and time
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Figure 3.12: Integrated column water vapor number density between 0 and 10 km for
reasearch flight 6. Water vapor concentration was calculated from ECMWF
ERA-Interim data (Dee et al., 2011) from 12 UTC reanalysis on 19. August
2016. The red line indicates the flight track of the HALO research aircraft.

of the measurement. To do so the water vapor concentration needs to be known. For
this purpose, meteorological data from the European Center for Medium-Range Weather
Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011) were used to calculate the
number density of water vapor. ERA-Interim data are freely available with a horizontal
resolution of ∼80 km and 60 vertical levels up to a pressure of 0.1 hPa. Reanalysis are
available in steps of 6 hours starting from 00 UTC. Forecasts with time steps of 3 hours
are available starting at 00 and 12 UTC every day. In this thesis only reanalysis data
were used. Surface and pressure level data were combined to be able to calculate profiles
of water vapor number density. ERA-Interim reanalysis were downloaded for each RF,
spanning its entire spatial and temporal extension as can be seen in figures 3.12 and 3.13.

To evaluate the dependency of the threshold on water vapor concentration, a large
number of ERA-Interim water vapor profiles from selected RFs was calculated. The cho-
sen RFs span a large range of water vapor concentrations to cover all possible situations.
Beside these profiles, also a profile for the scene used for threshold tuning was computed
by interpolation in space and time. All profiles were then used as input for radiative
transfer simulations. The libRadtran DISORT solver, together with a model cloud be-
tween 0.6 and 0.8 km, was used to simulate the SWIR camera measurements for the
different profiles (see table 6.3 for the complete setup). To these simulated spectra, the
least square fit according to equation (3.4) was applied, to model the response of the
threshold due to water vapor variation. The resulting fit parameter x was then plotted
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Figure 3.13: Integrated column water vapor number density between 0 and 10 km for
reasearch flight 7. Water vapor concentration was calculated from ECMWF
ERA-Interim data (Dee et al., 2011) from 12 UTC reanalysis on 22. August
2016. The red line indicates the flight track of the HALO research aircraft.

against the integrated column water vapor number density between cloud top at 0.8 km
and 10 km which was already mentioned to be a typical cruise altitude. This was done to
relate the variation of the threshold to a single quantity describing the amount of water
vapor.

Figure 3.14 shows the plot of the fit parameter x as a function of the integrated col-
umn water vapor concentration (blue dots). The distribution agrees well with a quadratic
fit function (orange). The spread of the points is due to the dependence of absorption
efficiency on temperature. Two profiles with equal amount of column water vapor can
deviate in their absorption properties, because of a different vertical water vapor distri-
bution. To adapt the threshold correctly, the quadratic fit needs to be normalized to 1
for an integrated water vapor equal to the reference scene, to keep the initial threshold
unchanged. For the general form of the quadratic function depending on integrated water
vapor (iwv)

g(iwv) = α · iwv 2 + β · iwv + γ (3.12)

where α, β and γ are the fit parameter, the normalization is achieved by recalculating the
constant γ for the reference integrated water vapor iwvref

g(iwvref ) = 1 = αfit · iwv 2
ref + βfit · iwvref + γnew

γnew = 1− αfit · iwv 2
ref − βfit · iwvref

(3.13)

Applying this normalization to the fit parameter yields the function:

g(iwv) = −1.150 · 10−47 iwv 2 + 7.682 · 10−24 iwv + 0.5614 (3.14)
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Figure 3.14: Simulated variation of the water vapor fit parameter x as a function of inte-
grated column water vapor between 0.8 and 10 km. The orange curve shows
a quadratic least square fit applied to the data. The fit function was nor-
malized to the integrated water vapor of the scene used for threshold tuning
(0.6 · 1023 cm−2) (green curve)

which is represented by the green curve in figure 3.14. Now the adaptation has to be
incorporated in the threshold calculation introduced in equation (3.8), as xthres(sza, vza)
is now also a function of integrated water vapor concentration g(iwv)

xthres(sza, vza, iwv) =
1

2

(
1

cos(sza)
+

1

cos(vza)

)
· g(iwv) · xthres,std (3.15)

Abbreviating the viewing and sun geometry term on the right hand side of the equation
by f(sza, vza)

f(sza, vza) =
1

2

(
1

cos(sza)
+

1

cos(vza)

)
(3.16)

the new relation for the cloud detection threshold reads

xthres(sza, vza, iwv) = f(sza, vza) · g(iwv) · xthres,std (3.17)

Using this equation it is possible to receive a decent estimate of the threshold for variations
of SZA, VZA as well as water vapor concentrations. Nevertheless the reanalysis data
with low spatial and temporal resolution are may not precise enough in some situations.
Therefore it is possible that if the water vapor concentration obtained by the model is
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lower than in reality the threshold adaptation according to equation (3.14) is to weak and
small clouds or cloud edges are not detected properly. The other possible error is an over
estimation of the actual water vapor concentration, which can cause high false detection
rates. Classifying clear pixels as cloudy is a more serious error than detecting less clouds
than actually present, especially for deriving a cloud size distribution. Therefore, the focus
is rather on reliably detecting cloudy pixels and accept to classify some cloudy pixels as
clear sky, than taking the risk to eventually classify a large number of clear pixels as
cloudy. This is achieved by slightly enhancing the tuned threshold in section 3.4.3 from
0.81 to 0.82.

3.4.7 Binary operations

Even if the threshold is chosen carefully there are certain situations where the the cloud
mask fails. In these cases a large number of circumstances act together. It was observed
that for some scenes with strong sunglint during research flight (RF) 6, a large number
of pixels was classified as cloudy, although visual inspection did not reveal any evidence
for the presence of clouds. The wrongly detected clouds were not larger than about two
pixels and coincided with dark regions on the ocean’s surface. These dark regions were
due to high waves traveling perpendicular to the direction of the Sun’s position, which
caused a shading of the wave areas facing away from the sun. These areas are shown in
figure 3.15. Some of these dark regions within the bright sunglint were not masked by the
brightness or noise mask.

A possible explanation that these regions in were identified as cloudy by the water
vapor cloud mask, is a high concentration of aerosol particles. Aerosols scatter short wave
infrared radiation way more efficient than air molecules which has two effects. First, more
radiation is scattered towards the camera than in a clean atmosphere which prevents
the apparently dark pixels from being identified as ”dark” by the noise or brightness
mask. The second effect is that the scattered light received by the camera originates
from regions way above the surface and has therefore an absorption signature similar to
a cloud. Additionally, to high water vapor concentrations from the ECMWF data could
contribute to this failure.

As several thousand of these small wrongly detected cloud pixels occur in the cloud
mask this problem can not be ignored, especially as it has great influence on the cloud
size distribution derived from the cloud mask. Therefore it was decided to apply a binary
opening operation on the cloud mask with a 3x3 kernel. A opening is a erosion followed
by a dilation. The erosion eliminates all clouds smaller than the kernel, which is in this
case 3x3 pixel. As also larger clouds loose area by the erosion the subsequent dilation
adds the previously lost pixels. For a mathematical definition of these operations see JI
et al. (1989).

In the algorithm the binary opening is applied in the post processing after the the
water vapor and the brightness cloud masks were merged according to the sunglint mask.
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Figure 3.15: Detail of the 1600 nm radiance measured by the SWIR camera during re-
search flight 6 at 16:30 UTC. Dark regions within the bright sunglint are
indicated by red circles.

3.4.8 Cloud detection workflow

Figure 3.16 summarizes all the aspects of the cloud detection algorithm presented in the
previous sections. It is divided in a center branch, which contains the fundamental steps
to obtain the final cloud mask and two side branches, where additional input parameters
and information about the procedures leading to consecutive results in the center branch
is provided.

The processing starts with the raw data measured by the SWIR camera in form of
digital numbers (DN) for each sensor pixel. In the calibration step the DN has to be
translated to radiance. Thereby corrections for the dark signal (ds), the spectral trans-
mittance of the window in front of the camera (wc), damaged sensor pixels (bp) and the
exposure time of the camera (dt) are applied. To erase irregularities and obtain consistent
fit result, the calibrated data are subsequently smoothed by a 3x3 Gaussian kernel. Now
the least square fit of the reference spectrum is applied to the camera spectrum of each
spatial pixel according to equation (3.4), which yields the fit parameter a, a measure for
the brightness of the spectrum, and x, which provides information about the degree of
absorption in the respective spectrum. From the fit parameter a the brightness cloud
mask is derived applying a constant threshold of 0.62. This cloud mask, together with
the noise mask, is used to exclude dark and noisy pixels from further processing in the
water vapor cloud mask (masked x parameter).

To create the noise mask, the dark signal correction is applied to the raw data. From
the dark corrected signal the signal-to-noise ratio (SNR) of the SWIR camera can be
calculated according to equation (3.2). Subsequently, a threshold of 40 is applied to the
average SNR for the spectral channels located on the flanks of the water vapor absorption
bands (see section 3.4.4), which yields the noise mask. Now the masked results for the
fit parameter x are used to create a second cloud mask. Therefore, the tuned standard
threshold for sza = vza = 0 (0.82) is corrected for the SZA in each camera frame and
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Figure 3.16: Sketch of the process steps and necessary ingredients of the combined water
vapor absorption and brightness cloud mask.

the VZA for each pixel within the frame (see eq. 3.8). Additionally the water vapor
adaptation factor for each frame is calculated. Thereby, the integrated column water va-
por number density between 0.8 and 10 km is interpolated from ECMWF ERA-Interim
reanalysis (Dee et al., 2011) for each frame (see section 3.4.6). The column water vapor is
then plugged into the the fit function (3.14), which models the dependency of the tuned
threshold on water vapor concentration and yields the needed adaptation factor. Apply-
ing these thresholds to each individual pixel gives the water vapor cloud mask.

In a last step the brightness and the water vapor cloud mask are merged accord-
ing to a simulated sunglint mask. The sunglint is simulated by calculating the ocean’s
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reflectance for each pixel in every camera frame, assuming a wind speed of 5 ms−1. A
reflectance threshold of 0.005 is then applied to discriminate between sunglint contami-
nated and dark surface (see section 3.4.5). For bright frames the water vapor cloud mask
is preferred, whereas in dark regions the brightness cloud mask is chosen. Finally a binary
opening is applied to eliminate eventually false detected cloud pixels (see section 3.4.7).

The result of all these steps is the best estimate for the cloud mask derived from the
SWIR camera data. From this cloud mask other quantities like cloud fraction or a cloud
size distribution can be derived.

3.5 Treatment of corrupt data

The data captured by specMACS during NARVAL II sometimes suffer from problems like
window icing and missing dark signal measurements. When the aircraft was flying at high
altitudes with cold temperatures, the water vapor in the housing of the specMACS in-
strument froze onto the window of the housing. Therefore, these data have to be rejected.
It also happened that the control software of the instrument missed to measure the dark
signal of the sensor, when the camera settings changed. If no dark signal measurement is
available for a specific setup, these data can not be calibrated and also have to be rejected.

Currently these corrupt data have to be found by visual inspection and excluded manually
as no automatic algorithm exists, which is able to detect these errors at present.

3.6 Cloud fraction

From the cloud mask, derived using the previously described method, the cloud fraction
can be calculated for defined scenes or whole research flights (RFs). The cloud fraction
was calculated taking the fraction of cloudy pixels divided by the number of all pixels.
This approach is a standard method for deriving cloud fraction and is commonly used for
satellite data (see section 2.3.2). One aspect, which is not explicitly considered in this
approach, is the difference in pixel size between pixels pointing vertically downward and
those at viewing zenith angles (VZA) larger than zero degree. This variation is neglected
for two reasons: First, at larger VZA it is more probable to observe cloud sides rather
than cloud tops. Therefore, a weighting of pixels according to their size would introduce
an error if cloud sides are observed instead of the clear sky behind the cloud tower (see
figure 2.17). The second and more important reason is that – assuming that clouds are
randomly distributed over different VZAs – the error averages out to some extent. If
clouds would always be located in the center of the camera image (low VZA) or always
on the edges (high VZA), which is not observed in the data, the error might become
significant.
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3.7 Cloud size distribution

Figure 3.17: Image captured by the SWIR camera from 18:11-18:13 UTC during research
flight 6. The measured radiance at 1600 nm is shown.

3.7 Cloud size distribution

From the cloud mask obtained by the approach described in the previous sections, it is
now possible to derive the cloud size distribution. In this section the method used to
derive the along-track cloud size distribution will be described in detail. The reason why
only the along-track size distribution is considered, is that the entire extension of large
clouds can only be captured in the along-track direction. The field of view (FOV) in the
across-track direction of the specMACS instruments amounts about 6.4 km for a cruise
altitude of 10 km. This fact causes two major problems. First, the maximum cloud size
in the across-track direction is limited by the FOV, which means that no clouds larger
than about 6.4 km can be detected at all. Second, clouds of this size can only be detected
if they are perfectly centered within the FOV otherwise they are cut off. Following the
results of Zhao and Di Girolamo (2007), shallow cumulus clouds of this size are the ones
occurring most infrequent, which leads to a significant undersampling of the largest clouds
if they are not properly detected and results in bad statistics. This problem is shown in
figure 3.17. The two large clouds in the scene are cut off by the limited FOV in across-
track direction but their extension in the along-track direction is captured properly.

During the NARVAL II campaign, the SWIR camera was operated with a constant
frame rate of 30 Hz. For a typical cruise speed of the HALO aircraft of 200 ms−1 the
horizontal distance between two consecutive camera frames amounts 6.7 m. The along-
track FOV of 1.8 mrad corresponds to a pixel size of 18 m assuming a cruise altitude of 10
km. Therefore, the pixel size is larger by nearly a factor of 3 compared to the horizontal
distance of consecutive frames. This leads to a strong overlap of the FOV of consecutive
frames. Therefore, the along-track pixel size is rather determined by frame rate and
aircraft speed, than by the along-track FOV of the camera. Hence, the size of clouds
can be determined independently of assumptions over the distance between the observed
cloud and the aircraft, which would be necessary to determine the pixel size corresponding

55



3 Methods

Figure 3.18: Sketch of a SWIR camera measurement time series along the flight track.
Vertical dashed lines (black) indicate the time and location a measurement
took place, the diverging gay lines show the field of view (FOV) of the camera.
The black and white boxes represent a possible cloud mask for the sketched
scene.

to its FOV. The situation sketched in figure 3.18 nicely shows the previously described
overlap of the along-track FOV indicated by the slant gray lines. The black dashed lines
in the vertical, denote the time the measurement took place, which corresponds to the
time-stamp of each frame. As the aircraft moves at speed v, the time between consecutive
frames ∆t corresponds to a distance ∆x = v∆t. The observed cloud of length L fills the
two consecutive FOVs (t3, t4) to a large extent. Therefore, these pixels are labeled cloudy
in the cloud mask. The neighboring FOVs (t2, t5) are only slightly covered by the cloud
edges and are not detected as cloudy. In a first approximation the length of the cloud
can be estimated to L = v(t5 − t4) = v∆t5,4. Actually, the cloud is larger, which can be
seen in the figure. To account for this, it is assumed that each cloud extends to about
half the distance to the previous and following non-cloudy pixel, which is indicated by
the vertical dashed lines on the cloud edges in figure 3.18. This might not be true for all
clouds but this approximation is closer to the real cloud size, as the first approximation
systematically underestimates the cloud length. Compared to the errors introduced by
the cloud detection itself, this uncertainty in the cloud size is small, especially for large
clouds. Furthermore, this assumption will not influence the slope of the derived cloud
size distribution as long as it is applied consistently, because it has the same effect like
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a change of the threshold (compare section 2.2.5). Applying this now to the discussed
example reads:

L = v

(
t4 − t3

2
+ t5 − t4 +

t6 − t5
2

)
(3.18)

To give a more general formulation for the calculation of the along-track cloud length,
variations of the aircraft speed have to be taken into account. Therefore, v is replaced by
the mean speed v̄ of the aircraft while it crosses the cloud. Additionally, the time-stamp
of the first cloudy pixel is denoted by tin and the one of the last cloudy pixel by tend,
where in and end are the corresponding indices of the time array. Using these definitions,
gives the general form of the cloud length calculation:

L = v̄

(
tin − tin−1

2
+ tend − tin +

tend+1 − tend
2

)
(3.19)

This equation also works in the case of single pixel clouds, which are assumed to be of
the same extent like two consecutive camera frames.

Equation (3.19) depends on the first and last time index of each cloud, wherefore they
have to be extracted from the cloud mask. This is done using the ndimage.measurements
module from SciPy Python library. All clouds in the cloud mask are labeled, before the
time index of the first and last cloudy pixel of each cloud is extracted. The average speed
of HALO for the time indices of each cloud, is calculated using the ground speed data
from the BAHAMAS instrument. From the time indices and the average aircraft speed
the cloud length can be calculated according to equation (3.19).

To derive a cloud size distribution, the clouds are binned with intervals of 200 m. The
number of clouds in each bin is then plotted in a histogram. Additionally, a power law fit
according to equation (2.17) is applied, whereby the frequency in each bin is assigned to
the center size of each bin. To obtain better statistics and avoid undersampling of large
clouds, the cloud size distributions of research flights 3 and 6 are merged.

3.8 Validation

A great challenge for all kinds of retrieval methods applied to measurement data is, to
assess the quality of the results. For cloud detection methods it is important that only
cloudy pixels are labeled as such and that the cloud fraction estimated from the retrieved
cloud mask agrees well with the ”true” cloud fraction. As there is no truth available for
measurement data, the only possibility to estimate the quality of retrievals is to apply
them to model data, where the measured and retrieved quantities are known.

To investigate the performance of the cloud detection algorithm developed in this the-
sis, a cloud field from a large eddy simulation (LES) was used as a input for 3D radiative
transfer simulations with MYSTIC (Monte carlo code for the physically correct tracing
of photons in cloudy atmospheres) (Mayer, B., 2009). MYSTIC was used to realistically
simulate a measurement with the SWIR camera mounted on an aircraft and observing
the ocean and clouds below from an altitude of 10 km. Therefore, the simulation is as
close as possible to the real measurement situation during NARVAL II. Simulations were
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carried out for different sunglint situations (varying wind speed) and solar zenith angles to
obtain information about the methods performance under various conditions. The LES as
well as the radiative transfer simulations with MYSTIC were performed by Fabian Jakub.
Further information on MYSTIC and the exact model setup can be found in section 3.3
and in table 6.4 in the appendix.

Before the cloud detection algorithm was applied, the spectra simulated with MYS-
TIC were convolved with the spectral response function (slit function) of the SWIR camera
(see section 3.3.2). The signal-to-noise ratio (SNR) of the SWIR camera is a quantity
characteristic for this specific instrument and can not be calculated from the model out-
put. Therefore, the noise mask derived from the SNR of the SWIR camera is excluded
from the cloud detection. The binary opening operation was introduced in the retrieval, to
reduce errors due to high aerosol concentrations and inaccurate water vapor data derived
from the ECMWF reanalysis (see section 3.4.7). As the validation is intended to assess
the general performance of the cloud detection method, given the necessary parameters
are known, the binary opening is also not applied to the model scenes. The integrated
water vapor for the MYSTIC simulations was calculated from the used atmosphere file,
the viewing zenith angles and the solar zenith angle were also taken from the model in-
put. These are required input parameter for the calculation of the threshold according to
equation (3.17).

The cloud mask derived using the water vapor approach, was compared to the cloud
mask from the liquid water path (LWP) of the LES output with a threshold of LWP> 0
gcm−2, which serves as a benchmark. The quality of the cloud mask obtained by the
water vapor approach, is evaluated by comparing it to the benchmark cloud mask.
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In this chapter the performance of the developed cloud detection algorithm is investi-
gated. The results for the validation data set is discussed quantitatively, whereas the
performance on measurement data can only be assessed qualitatively as the truth is un-
known. Hereafter, the cloud detection algorithm is also referred to as water vapor cloud
mask or water vapor algorithm.

4.1 Validation

For the simulated validation data, a cloud mask was derived by applying a threshold to
the liquid water path (LWP) from the large eddy simulation (LES). The threshold was set
to LWP> 0, which means that each pixel, which contains any amount of liquid water is
classified as cloudy. This benchmark cloud mask is compared to the cloud masks derived
by the water vapor algorithm for varying wind speed and solar zenith angle.

The first comparison is shown in figure 4.1. Here the simulation with a solar zenith
angle (SZA) of 10◦ and a wind speed of 5 ms−1 is compared to the benchmark cloud mask.
The upper panel shows the simulated radiance at a wavelength of 1600 nm, the bottom
panel the corresponding water vapor cloud mask. The image in the center depicts the
LWP cloud mask, which has a cloud fraction 24.55%. This value is 1.1% larger, than the
cloud fraction of the water vapor cloud mask with 23.45%. Red circles in the center image
indicate regions where the two cloud masks differ. The difference is due to optically thin
edge pixels, which can barely be seen by eye in the radiance image. Most of the cloud
pixels, which were not detected by the water vapor cloud mask, are located in the lower
part of the image, where the sunglint is strongest. Therefore, they are illuminated by light
reflected on the ocean’s surface, which results in higher water vapor absorption, as the
measured light is a superposition of light reflected on top of the cloud and light reflected
on the surface. Beside the discrepancy for edge pixels, the two cloud masks agree well.

4.1.1 Variation of the solar zenith angle

To examine the influence of variations in solar zenith angle, the above described simulation
was performed with a SZA of 30◦ and same wind speed. The simulated radiance and the
water vapor cloud mask for this simulation are shown in figure 4.2. As the sun’s azimuth
is 180◦ (points towards the bottom of the page) only a small strip of sunglint can be
identified on the lower boundary of the radiance image. Nevertheless, the surface is too
bright to use a brightness cloud mask. The cloud fraction for the water vapor cloud mask
in this scene is 21.7%, which is 2.85% below the benchmark LWP cloud mask and 1.75%
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Figure 4.1: Cloud mask of simulated validation scene for a solar zenith angle (SZA) of
10◦ and a wind speed of 5 ms−1. Upper panel: simulated radiance at 1600
nm. Center panel: cloud mask derived from LES liquid water path (LWP)
with a threshold of LWP> 0 g cm−2 and a cloud fraction of 24.55%. Bottom
panel: cloud mask derived by the water vapor algorithm with a cloud fraction
of 23.45%. Red circles indicate regions, where the LWP cloud mask detects
more clouds than the water vapor cloud mask.

less than for the simulation with a SZA of 10◦. To identify the differences in the water
vapor cloud masks due to the SZA variation, the contours of the cloud mask for SZA = 10◦

(orange) is plotted onto the SZA = 30◦ cloud mask in figure 4.2.
Two features can be observed comparing the two cloud mask. The first one is, that
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Figure 4.2: Cloud mask of simulated validation scene for a solar zenith angle of 30◦ and a
wind speed of 5 ms−1. Upper panel: simulated radiance at 1600 nm. Bottom
panel: cloud mask derived by the water vapor algorithm with a cloud fraction
of 21.7%. Orange contours indicate the water vapor cloud mask for a SZA of
10◦ and a wind speed of 5 ms−1.

on the cloud sides facing away from the sun, less cloudy pixels are detected for the larger
SZA. These regions are shaded by the higher cloud tops in the center of the clouds. In the
previous chapter it was already mentioned, that these 3D effects enhance the absorption
because of multiple scattering. The threshold adaptation according to equation (3.8), is
based on 1D considerations and does not account for such 3D effects. The second feature
can be identified in the upper part of the cloud mask. Here also the edge pixels on the
cloud side facing towards the sun get lost for larger SZA. Especially the two small clouds
on the upper left side disappear completely. The major cause of this cloud mask failure
is the brightness mask. Looking at the radiance image the clouds are considerably darker
for the SZA of 30◦ than for 10◦. Therefore, they do not surpass the constant brightness
threshold and are labeled non-cloudy.
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Figure 4.3: Cloud mask of simulated validation scene for a solar zenith angle of 10◦ and a
wind speed of 1 ms−1. Upper panel: simulated radiance at 1600 nm. Bottom
panel: cloud mask derived by the water vapor algorithm with a cloud fraction
of 22.37%. Orange contours indicate the water vapor cloud mask for a SZA
of 10◦ and a wind speed of 5 ms−1.

4.1.2 Variation of wind speed

The wind speed significantly influences the ocean’s reflectance (see figure 2.7). For low
wind speeds the sunglint is brighter and has a smaller spatial extent. This may has
influences the performance of the water vapor cloud mask. Therefore, a simulation for
a SZA of 10◦ an a wind speed of 1 ms−1 was conducted, which is shown in figure 4.3.
The very bright strip of the sunglint can nicely be seen in the simulated radiance image
in the upper panel of the figure. Here, the clouds are rather dark features in front of a
bright background than vice versa. But also in this complex situation, the water vapor
cloud mask performs well with a cloud fraction of 22.37%. Compared to the simulation
for same SZA, but a wind speed of 5 ms−1, – shown as orange contours as before – cloudy
edge pixels right above the sunglint are not detected. This feature can also be referred to
the light, which is reflected on the surface and penetrates the optically thin cloud pixels
from below and thereby enhances the measured absorption.
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4.1.3 Discussion

The examination of the water vapor cloud mask shows an overall good agreement with
the cloud fraction of the benchmark cloud mask. The loss in accuracy for larger SZA
can possibly be reduced by parameterizing the 3D effects in the threshold adaptation
and adapt the brightness threshold according to the solar zenith angle. Another possible
source of error originates from the assumption, that water vapor absorption above the
cruise altitude of the aircraft can be neglected. This works for small SZA, but becomes
more inaccurate for larger SZA. This problem could be solved by weighting the SZA
adaptation higher than the VZA adaptation and do not weight them equally by a factor
of 0.5, as shown in equation (3.8).

The loss of optically thin cloud pixels for small wind speeds can not be improved,
but shows the limitation of the method itself and the instruments accuracy. The water
vapor absorption signature of these pixels is to close to the one of clear sky pixels to be
distinguished. A question, which was already asked by Di Girolamo and Davies (1997)
and which is still unresolved, is how the true cloud fraction is actually defined? As there
is no definition, also the benchmark cloud mask with a LWP threshold value of zero could
be inaccurate, because one droplet in the entire atmospheric column might not be called
a cloud. If the LWP threshold is for example set to 0.67 gcm−2 the cloud fraction is the
same like for the simulation with a SZA of 10◦ and a wind speed of 5 ms−1. With this in
mind the validation of the water vapor cloud mask was successful.

4.2 Performance on measurement data

In contrast to the previously described model data, the performance of the water vapor
cloud mask on measurement data, can only be assessed by visual inspection. Figure 4.4
shows a sunglint affected scene captured by the SWIR camera during research flight (RF)
6. In the upper panel the measured radiance at a wavelength of 1600 nm is shown, the
center image depicts the corresponding water vapor cloud mask. In the bottom panel
the contours of the cloud mask (orange) are plotted onto the camera image for better
comparison.

The large and optically thick clouds are well detected by the algorithm over both,
bright sunglint and dark ocean surface. In the center and on the left side, the smaller and
darker clouds, which are not surrounded by the cloud mask contours stand out. These
clouds appear to be very close to the surface and are optically thin. Some of the clouds
could maybe be detected, if the the threshold for the water vapor cloud mask was set
lower, but due to the coarsely resolved and at times not perfectly accurate ECMWF
reanalysis water vapor information, this would cause failure of the cloud mask in other
scenes. Additionally, clouds smaller than 3x3 pixel were removed by the binary opening
operation. The smallest and thinnest clouds though, suffer from the problem of transmit-
ted light which was reflected on the surface, as already described in the previous section.
To overcome this problem, the cloud masks as well as the instruments accuracy would
need to be improved.
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Figure 4.4: Cloud mask for a scene during research flight 6 at 16:09 UTC. Upper panel:
SWIR camera image of measured radiance at 1600 nm. Center panel: cloud
mask derived by the water vapor algorithm with a cloud fraction of 22.34%.
Bottom panel: contours of the cloud mask mapped onto the SWIR camera
image.

During RF7 the meteorological situation was significantly different. As already shown
in figure 3.13, the water vapor concentration was nearly twice the one during RF6. Fur-
thermore, the cloud structures were more complex. Shallow cumulus clouds were obscured
by mid-level stratus cloud fields and high cirrus clouds. Such a multi-layer cloud scene
is shown in figure 4.5. A large fraction of the scene is covered by high cirrus clouds,
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Figure 4.5: Cloud mask for a scene during research flight 7 at 16:14 UTC. Upper panel:
SWIR camera image of measured radiance at 1600 nm. Center panel: cloud
mask derived by the water vapor algorithm with a cloud fraction of 79.06%.
Bottom panel: contours of the cloud mask mapped onto the SWIR camera
image.

which are thin enough to see the shallow cumulus clouds below. For these cirrus clouds
the water vapor cloud mask works excellent, because the water vapor absorption is very
small. On the left edge of the camera image a small area without cirrus clouds can be
identified. The shallow cumulus clouds in this region are not detected accurately. This
can have many causes. The presence of cirrus clouds enhances the amount of diffuse solar
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Figure 4.6: Histogram of along-track cloud size distribution combing results for research
flights 3 and 6 (RF3, RF6). A bin-width of 200 m was used for all clouds
smaller than 7 km. A power-law was fitted according to equation (2.17) yield-
ing an exponent of λ = 2.62.

radiation, which increases the light path and therefore the absorption. Additionally, the
flight track of RF7 was close to deep convection of the ITCZ. For this reason it is likely,
that the water vapor concentrations derived from the ECMWF data were to low, due to
the coarse resolution in space and time. Such complex cloud scenes are not of high value
for remote sensing retrievals, because no reasonable conclusions can be drawn from the
cloud fraction or cloud size distribution of a mixture of cirrus and shallow cumulus clouds.
Therefore, inaccuracies in the cloud mask are of minor importance.

4.2.1 Discussion

The two scenes from RF6 and RF7 show the two to typical regimes encountered during
NARVAL II campaign. Shallow cumulus convection in the trade wind region with similar
meteorological conditions throughout a whole research flight and the highly variable and
complex cloud structures in the vicinity of deep convective clouds. For these complex
cloud scenes the algorithm shows inaccuracies, which are due to diffuse radiation caused
by thin cirrus clouds and insufficient knowledge about the water vapor concentrations in
the vicinity of deep convection. For shallow cumulus cases the water vapor cloud detection
algorithm reveals good performance, which can also be seen in figure 6.1 in the appendix,
depicting a scene during RF3. Even if the very low and optically thin cumulus clouds
could not be detected this cloud mask gives the possibility to estimate representative
values for cloud fraction and cloud size distribution.
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4.3 Cloud size distribution

The cloud mask investigated in the previous sections can be used to derive a cloud size
distribution. The method used to derive the cloud size distribution from the SWIR
camera cloud mask, is described in section 3.7. Figure 4.6 shows the along-track cloud
size distribution derived from a combined data set of RF3 and RF6, which both represent
a shallow cumulus regime. The data were merged to obtain more accurate statitics and
avoid undersampling of large clouds. Fitting a power law according to equation (2.17)
yields a exponent of λ = 2.62. Furthermore, a scale break as described by Zhao and
Di Girolamo (2007) can be found. For clouds smaller than about 1 km the slope of the
size distribution is smaller than for larger clouds. This cloud size distribution can serve
as a validation quantity for model studies of shallow cumulus convection.

4.3.1 Discussion

The cloud size distribution derived from RF3 and RF6 show good agreeement with the
results of Zhao and Di Girolamo (2007), who found values for the fit paramter λ between
2.58 and 3.55 in the tropical western Atlantic. The statistics cloud be improved by adding
cloud size distributions from other research flights.
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In this thesis a cloud detection algorithm was developed, which uses the absorption by
water vapor in the short wave infrared solar spectrum (SWIR) to identify clouds in the
presence of sunglint. The algorithm was applied to data collected by the SWIR camera
of the hyperspectral imager specMACS during NARVAL II measurement campaign. To
extract the information about water vapor absorption from measured spectra, two refer-
ence spectra were calculated using the 1D DISORT solver from libRadtran (Mayer and
Kylling, 2005): one with was calculated with and one without molecular absorption. The
reference spectrum without absorption multiplied by the derived reference transmittance,
was then fitted to each camera spectrum, after they were convolved with the spectral
response function of the instrument. Thereby, the fit parameter a scales the brightness
of the spectrum and the fit parameter x exponentially scales the reference transmittance
and contains information about water vapor absorption. Subsequently thresholds for both
parameters were derived. The threshold for x is scaled according to the solar zenith angle
(SZA), the viewing zenith angle (VZA) and the actual abundance of water vapor, which
was derived from ECMWF ERA-Interim reanalysis (Dee et al., 2011). The sensitivity of
the threshold to water vapor concentration was determined by radiative transfer simu-
lations. Cloud masks from both parameters were combined together with a noise mask
obtained by applying a threshold to the signal-to-noise ratio of the SWIR camera. For
larger SZA the camera frames are not affected by sunglint and the brightness cloud mask
from fit parameter a yields better results. Therefore, simulations of the ocean’s reflectance
were conducted to derive a sunglint mask. According to the sunglint mask, the different
cloud masks are merged to obtain the best estimate for the cloud mask. In a final step,
a binary opening operation was applied to remove clear sky pixels, which were wrongly
classified as cloudy.

The validation of the algorithm with model data reveals good performance. For a
SZA of 10◦ and wind speed of 5 ms−1 the cloud fraction derived from the cloud mask
of the water vapor approach is 23.45% and therefore only slightly below the benchmark
cloud fraction of 24.55% derived from model data. For higher SZA the water vapor cloud
mask loses accuracy due to shading effects on cloud edges, which enhances the water
vapor absorption due to multiple scattering. The cloud fraction for a SZA of 30◦ and a
wind speed of 5 ms−1 is 21.7% and therefore lower than for the SZA of 10◦. For smaller
wind speeds the sunglint becomes brighter and illuminates cloud edges from below. As
the measured signal is a superposition of light reflected on the cloud and light reflected on
the ocean’s surface, which is subsequently transmitted through the cloud, the water vapor
absorption for these pixels becomes larger and they are not detected as cloudy. Therefore,
the cloud fraction reduces for a SZA of 10◦ and wind speed of 1 ms−1 compared to the
simulation with same SZA but higher wind speed (5 ms−1) to 22.37%. The performance
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on measurement data also yields positive results, showing the same limitations found
for the simulated measurement data. Additional inaccuracies arise from uncertainties in
water vapor concentrations derived from ECMWF reanalysis data and high aerosol con-
centrations.

Even if the presented cloud detection algorithm shows a over all good performance, small
improvements can still be made. Furthermore, the derived cloud mask can be used in fu-
ture studies. Some ideas about the possibilities in this context are given in the following.

The loss in cloud mask performance for larger SZA can have two reasons. Shaded cloud
regions, where the water vapor absorption is enhanced by multiple scattering and water
vapor absorption above the the cruise altitude of the aircraft, which becomes too large
to be neglected when the SZA rises. The shading effect could be parameterized for the
threshold adaptation to some extent using 3D radiative transfer simulations to get an esti-
mate for the magnitude of this effect. The water vapor absorption above the aircraft could
also be considered by assigning a higher weight to the SZA adaptation in the threshold
calculation. The weighting factor can be estimated using radiative transfer simulations.
Another possibility to generate a more accurate threshold for the fit parameter x could be
the use statistical techniques. In a histogram analysis of all x-values for a scene, a better
threshold could be estimated. The uncertainty in water vapor concentrations derived from
ECMWF reanalysis could reduced using additional information from the WALES LIDAR
or dropsonde profiles, which both measure vertically resolved water vapor profiles. Beside
the improvements in the threshold determination, the water vapor fit parameter could
be used to derive cloud top heights. The higher the cloud, the smaller the absorption.
For this purpose, multidimensional look-up-tables would need to be calculated. Another
improvement could be made with respect to the computational time needed for the calcu-
lation of the cloud mask, by reducing the number of wavelengths considered in the least
square fit. Thereby, it should be evaluated if the cloud mask is still accurate, when less
wavelengths are used.

This thesis pointed out repeatedly, that the absence of a true cloud fraction for
measurement data is a great issue. Additionally, the cloud mask derived for a specific
instrument also depends on its sensitivity towards clouds, the spatial and temporal reso-
lution, and the method used to detect the clouds. All these components act together and
can lead to completely different results for different instruments. This high discrepancy
was observed in the cloud fraction derived from the remote sensing instruments operated
during NARVAL II. Therefore, it is important to investigate and understand how much
and in which way parameters like resolution and instrument sensitivity influence the result
of the cloud detection process. A first attempt in this field was made by Sabrina Pavicic
in her Bachelor thesis, where the cloud mask derived from the SWIR camera is compared
to LIDAR, Microwave Radiometer and the SMART instrument. There are still a lot of
unresolved questions in the field of cloud detection, but at least one was answered in this
thesis: it is possible to detect shallow cumulus clouds in the presence of sunglint using
absorption by water vapor.
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6.1 Setups for libRadtran simulations

6.1.1 1D DISORT

The cloud detection algorithm developed in this thesis makes use of radiative transfer
calculations with the library for radiative transfer (libRadtran) (Mayer and Kylling, 2005).
Furthermore some figures presented in chapter 2 were created with the help of libRadtran
simulations. Therefore all setups for the individual calculations are listed here in tabulated
form.

Setup LWCRE

solver DISORT (Stamnes et al., 1988; Buras
et al., 2011)

atmosphere US standard atmosphere (afglus.dat)
(Anderson et al., 1986)

molecular absorption correlated-k, 12 bands, Fu and Liou
(1992)

wavelength 3.7 µm - 70 µm

aerosol default

sensor altitude top of atmosphere (TOA)

viewing zenith angle (VZA) 0◦

optical cloud properties default (Hu and Stamnes, 1993)

cloud liquid water content
(LWC)

1 g m−3

cloud effective radius (reff ) 10 µm

cloud height above surface 1-2 km/ 4-5 km/ 7-8 km

Table 6.1: Setup for calculation of the longwave cloud radiative effect depending on the
altitude of the cloud (see section 2.2.4).
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Setup Reference Spectra

solver DISORT (Stamnes et al., 1988; Buras
et al., 2011)

atmosphere tropical standard atmosphere
(afglt.dat) (Anderson et al., 1986)

molecular absorption REPTRAN/no molecular absorption

resolution coarse: ∆ν̃ = 15 cm−1 (∆λ = 1.5-9.5
nm for used wavelengths)

wavelength 1000 - 2500 nm

aerosol default

sensor altitude 10 km

surface properties ocean BRDF (Cox and Munk, 1954)

solar zenith angle (SZA) 0◦

viewing zenith angle (VZA) 0◦

optical cloud properties default (Hu and Stamnes, 1993)

cloud liquid water content
(LWC)

0.1 g m−3

cloud effective radius (reff ) 10 µm

cloud height above surface 600 - 800 m

Table 6.2: Setup for calculation of reference spectra for water vapor cloud retrival (see
section 3.4.2).
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Setup Water Vapor Adaptation

solver DISORT (Stamnes et al., 1988; Buras
et al., 2011)

atmosphere tropical standard atmosphere
(afglt.dat) with modified water
vapor from ECMWF data (Dee et al.,
2011; Anderson et al., 1986)

molecular absorption REPTRAN/no molecular absorption

resolution coarse: ∆ν̃ = 15 cm−1 (∆λ = 1.5-9.5
nm for used wavelengths)

wavelength 1000 - 2500 nm

aerosol default

sensor altitude 10 km

surface properties ocean BRDF (Cox and Munk, 1954)

solar zenith angle (SZA) 0◦

viewing zenith angle (VZA) 0◦

optical cloud properties default (Hu and Stamnes, 1993)

cloud liquid water content
(LWC)

1 g m−3

cloud effective radius (reff ) 10 µm

cloud height above surface 600 - 800 m

Table 6.3: Setup for calculation of spectra for different water vapor concentrations to
model threshold adaptation (see section 3.4.6).
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6.1.2 3D MYSTIC

?? The scenes used for the validation of the cloud detection algorithm were performed
with the 3D radiative transfer solver MYSTIC (Mayer, B., 2009). The specific options
used for the simulation of these scenes are listed in the table below.

Setup Water Vapor Adaptation

solver MYSTIC (Mayer, B., 2009)

atmosphere tropical standard atmosphere
(afglt.dat) (Anderson et al., 1986)

molecular absorption REPTRAN

resolution medium: ∆ν̃ = 5 cm−1 (∆λ = 0.5-2
nm for used wavelengths)

wavelength 1000 - 2000 nm

aerosol default

sensor altitude 10 km

surface properties ocean BRDF (Cox and Munk, 1954)

solar zenith angle (SZA) 10◦, 30◦

viewing zenith angle (VZA) ±15◦

optical cloud properties interpolate mie

cloud liquid water content
(LWC)

LES ouput

cloud effective radius (reff ) LES output

photos per grid box 1000

further options mc_spectral_is 1500,
mc_backward 0 0 149 0,
mc_vroom on,
mc_sensorposition 10 0 10000,
mc_sample_grid 150 1 [] [],
mc_panorama

distr_photons_over_pixel,
mc_panorama_view -15 15 90 90,
mc_panorama_alignment mu

Table 6.4: Setup for simulation of the validation scene conducted by Fabian Jakub (see
section 3.8).
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6.2 Additional results

6.2.1 Cloud mask example for RF3

To show that the cloud mask performs well for shallow cumulus environments in other
research flights than RF6 a scene captured during RF3 is depicted in figure 6.1.

Figure 6.1: Cloud mask for a scene during research flight 3 at 15:49 UTC. Upper panel:
SWIR camera image of measured radiance at 1600 nm. Center panel: cloud
mask derived by the water vapor algorithm with a cloud fraction of 8.71%.
Bottom panel: contours of the cloud mask mapped onto the SWIR camera
image.
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